1,052 research outputs found
Contamination of the space station environment by vented chemicals
Gaseous materials vented from materials and life science experiments on the Space Station may have noticeable effects on the optical or plasma environment. The magnitude of the effects depends on: (1) rarefied gas dynamics; (2) photochemical reactions; and (3) airglow excitation mechanisms. In general, the effects from atomic species can be mitigated, but the disturbances resulting from venting of molecules like SF6, CO2 and C2H2 can be significant. The interaction of molecules with ambient plasma at orbital velocities should be studied with laboratory or space experiments
Immobilisation of electroactive macrocyclic complexes within titania films
The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film
An Efficient Numerical Method for Simulating Electrochemically Driven Enzymatic Reactions
We consider systems in which electroactive enzymes are immobilised on an electrode surface through physical adsorption or covalent attachment on an electrode surface and substrate(s), product(s) and inhibitor(s) are present in the bulk solution. We solve the governing equations numerically by fully implicit finite differences (FIFD). Our numerical method relies on the formation of a sparse matrix from matrix blocks, which we call the kinetic block, containing kinetic terms for the enzyme reactions, and mass transport block(s) which contain the terms for the mass transport of substrate(s), product(s) and inhibitor(s). The resultant non-linear sparse matrix equation is solved using the sparse matrix solver in the MATHEMATICA kernel which in turn uses UMFPACK multifrontal direct solver methods and Krylov iterative methods preconditioned by an incomplete LU factorization. Due to the non-linear nature of the problem the solution is iterated at each time step until the desired degree of precision is obtained. Adaptation to a variety of mechanisms is performed by changing the terms in the kinetic block and the boundary conditions in the mass transport blocks. Adaptation to a number of different voltammetric methods is achieved by changing one or two lines of code describing the how applied potential changes with time
Cyanocobalt(III) complexes of penta- and tetradentate-coordinated macrocyclic hexaamines
The pendent-arm macrocyclic hexaamine trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L) may coordinate in tetra-, penta- or hexadentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo-octahedral cobalt(III) complexes of L, namely sodium trans-cyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)(3) or Na{trans-[CoL(CN)]}(ClO4)(3), (I), where L is coordinated as a pentadentate ligand, and trans-dicyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) cobalt (III) trans-dicyano (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium)cobalt(III) tetraperchlorate tetrahydrate, [Co(CN)(2)(Cl4H32N6)][Co(CN)(2)(Cl4H30N6)](ClO4)(4)•-4H(2)O or trans-[CoL(CN)(2)]trans-[Co(H2L)(CN)(2)] (ClO4)(4)•-4H(2)O, (II), where the ligand binds in a tetradentate mode, with the remaining coordination sites being filled by C-bound cyano ligands. In (I), the secondary amine Co-N bond lengths lie within the range 1.944 (3)-1.969 (3) &ANGS;, while the trans influence of the cyano ligand lengthens the Co-N bond length of the coordinated primary amine [Co-N = 1.986 (3) &ANGS;]. The Co-CN bond length is 1.899 (3) &ANGS;. The complex cations in (11) are each located on centres of symmetry. The Co-N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)-1.982 (3) &ANGS;]. The two independent Co-CN bond lengths are similar [1.918 (4) and 1.926 (4) &ANGS;] but significantly longer than in the structure of (1), again a consequence of the trans influence of each cyano ligand
trans-Cyano(6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine)cobalt(III) bis(perchlorate) hydrate and trans-hydroxo(6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine)cobalt(III) bis(perchlorate)
The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopentaaminecobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2.H2O and [Co(OH)(C11H27N5)](ClO4)(2), exhibit similar conformations, significant differences in the Co-N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen-bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen-bonding motifs involving the anion O atoms and the N-H and O-H donors
Tuning the metal-to-metal charge transfer energy of cyano-bridged dinuclear complexes
The metal-to-metal charge transfer (MMCT) transitions of a series of Class II mixed valence dinuclear complexes bearing cyano bridging ligands may be varied systematically by variations to either the hexacyanometallate(II) donor or Co-III acceptor moieties. Specifically, the new dinuclear species trans-[(LCoNCFe)-Co-14S(CN)(5)](-) (L-14S = 6-methyl-1,11-diaza-4,8-dithia- cyclotetradecane-6-amine) and trans-[(LCoNCRu)-Co-14(CN)(5)]-(L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine) have been prepared and their spectroscopic and electrochemical properties are compared with the relative trans-[(LCoNCFe)-Co-14(CN)(5)](-). The crystal structures of Na{trans-[(LCoNCFe)-Co-14S(CN)(5)]}.51/2H(2)O.1/2EtOH, Na{trans-[(LCoNCRu)-Co-14(CN)(5)]}.3H(2)O and Na{trans-[(LCoNCRu)-Co-14(CN)(5)]}.8H(2)O are also reported. The ensuing changes to the MMCT energy have been examined within the framework of Hush theory, and it was found that the free energy change between the redox isomers was the dominant effect in altering the energy of the MMCT transition
Iron catalysed assembly of an asymmetric mixed-ligand triple helicate
The 2-pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) family of ligands are typically tridentate N,N,O chelators that exhibit very high in vitro activity in mobilizing intracellular Fe and are promising candidates for the treatment of Fe overload diseases. Complexation of ferrous perchlorate with HPCIH in MeCN solution gives the expected six-coordinate complex Fe-II(PCIH)(2). However, complexation of Fe-II with 2-pyridinecarbaldehyde picolinoyl hydrazone (HPCPH, an isomer of HPCIH) under the same conditions leads to spontaneous assembly of an unprecedented asymmetric, mixed-ligand dinuclear triple helical complex Fe-2(II)(PCPH)(2)(PPH), where PPH2- is the dianion of bis(picolinoyl) hydrazine. The X-ray crystal structure of this complex shows that each ligand binds simultaneously to both metal centres in a bidentate fashion. The dinuclear complex exhibits two well separated and totally reversible Fe-III/II redox couples as shown by cyclic voltammetry in MeCN solution
Biologically active thiosemicarbazone Fe chelators and their reactions with ferrioxamine B and ferric EDTA; a kinetic study
The Fe abstraction from Fe /DFO and Fe /EDTA complex systems by thiosemicarbazone ligands derived from 2-acetylpyridine has been studied from a kinetico-mechanistic perspective at relevant pH conditions and at varying temperatures and buffer solutions. The reactions have been found to be extremely dependent on the dominant E/Z isomeric form of the TSC ligands present in the reaction medium. Consequently the isomerisation processes occurring on the free ligands have also been monitored under equivalent conditions. The isomerisation process is found to be acid dependent, despite the absence of protonation under the conditions used, and presumably proceeds via an azo-type tautomer of the ligand. In all cases the existence of outer-sphere interaction processes has been established, both promoting the reactions and producing dead-end complexes. The better oriented forms of the ligands (EZ thiolate) have been found to react faster with the [Fe(HDFO)] complex, although for mono-N substituted thiosemicarbazones the process is retarded by the formation of a dead-end outer-sphere complex. A comparison with the abstraction of Fe from [Fe(EDTA)(H O)] has also been conducted with significant differences in the kinetic features that implicate keystone outer-sphere interactions which dominate reactivity, even with isomeric forms that are not the best suited for direct complexation
- …