467 research outputs found

    On the equivalence of Clauser-Horne and Eberhard inequality based tests

    Full text link
    Recently, the results of the first experimental test for entangled photons closing the detection loophole (also referred to as the fair sampling loophole) were published (Vienna, 2013). From the theoretical viewpoint the main distinguishing feature of this long-aspired experiment was that the Eberhard inequality was used. Almost simultaneously another experiment closing this loophole was performed (Urbana-Champaign, 2013) and it was based on the Clauser-Horne inequality (for probabilities). The aim of this note is to analyze the mathematical and experimental equivalence of tests based on the Eberhard inequality and various forms on the Clauser-Horne inequality. The structure of the mathematical equivalence is nontrivial. In particular, it is necessary to distinguish between algebraic and statistical equivalence. Although the tests based on these inequalities are algebraically equivalent, they need not be equivalent statistically, i.e., theoretically the level of statistical significance can drop under transition from one test to another (at least for finite samples). Nevertheless, the data collected in the Vienna-test implies not only a statistically significant violation of the Eberhard inequality, but also of the Clauser-Horne inequality (in the ratio-rate form): for both a violation >60σ.>60\sigma.Comment: a few misprints were correcte

    NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner

    Get PDF
    This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins

    More indications for redox-sensitive cysteine residues of the Arabidopsis 5-aminolevulinate dehydratase

    Get PDF
    Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.Peer Reviewe

    Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis

    Get PDF
    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis

    Bell violation with entangled photons, free of the fair-sampling assumption

    Full text link
    The violation of a Bell inequality is an experimental observation that forces one to abandon a local realistic worldview, namely, one in which physical properties are (probabilistically) defined prior to and independent of measurement and no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction making them vulnerable to so-called "loopholes." Here, we use photons and high-efficiency superconducting detectors to violate a Bell inequality closing the fair-sampling loophole, i.e. without assuming that the sample of measured photons accurately represents the entire ensemble. Additionally, we demonstrate that our setup can realize one-sided device-independent quantum key distribution on both sides. This represents a significant advance relevant to both fundamental tests and promising quantum applications

    Climatic controls on leaf wax hydrogen isotope ratios in terrestrial and marine sediments along a hyperarid-to-humid gradient

    Get PDF
    The hydrogen isotope composition of leaf wax biomarkers (δ2Hwax) is a valuable tool for reconstructing continental paleohydrology, since it serves as a proxy for the hydrogen isotope composition of precipitation (δ2Hpre). To yield robust palaeohydrological reconstructions using δ2Hwax in marine archives, it is necessary to examine the impacts of regional climate on δ2Hwax and assess the similarity between marine sedimentary δ2Hwax and the source of continental δ2Hwax. Here, we examined an aridity gradient from hyperarid to humid along the Chilean coast. We sampled sediments at the outlets of rivers draining into the Pacific as well as soils within catchments and marine surface sediments adjacent to the outlets of the studied rivers and analyzed the relationship between climatic variables and δ2Hwax values. We found that apparent fractionation between leaf waxes and source water is relatively constant in humid and semiarid regions (average: −121 ‰). However, it becomes less negative in hyperarid regions (average: −86 ‰) as a result of evapotranspirative processes affecting soil and leaf water 2H enrichment. We also observed that along strong aridity gradients, the 2H enrichment of δ2Hwax follows a non-linear relationship with water content and water flux variables, driven by strong soil evaporation and plant transpiration. Furthermore, our results indicate that δ2Hwax values in marine surface sediments largely reflect δ2Hwax values from the continent, confirming the robustness of marine δ2Hwax records for paleohydrological reconstructions along the Chilean margin. These findings also highlight the importance of considering the effects of hyperaridity in the interpretation of δ2Hwax values and pave the way for more quantitative paleohydrological reconstructions using δ2Hwax

    A system for the assessment and training of temporal-order discrimination

    Get PDF
    Abstract Two programs were developed for psychophysical assessment and training of temporal-order thresholds in the visual and auditory modalities. Order threshold is defined as the minimum onset interval between two sensory events (stimulus onset asynchrony, SOA) that must exist before an observer is able to indicate the correct order of the events. Brain-injured patients with aphasia and children with language-learning impairments, i.e. those who have been diagnosed as performing poorly on temporal-order tasks and in discriminating stop-consonant vowel syllables, can effectively be trained by a feedback training procedure in which the SOA is manipulated. The performance in the temporal-order task and the ability to discriminate phonemes improves with this procedure. In the diagnostic program, the SOA is changed by an adaptive procedure that generates a sequence of SOAs converging to the threshold and is driven by the responses of the subject. The feedback-training program begins with the presentation of SOAs, which are slightly above the individual order threshold; they are subsequently varied according to the responses of the subject

    Diverse types of knowledge on a plate: a multi-perspective and multi-method approach for the transformation of urban food systems towards sustainable diets

    Get PDF
    Urbanization processes are accompanied by growing global challenges for food systems. Urban actors are increasingly striving to address these challenges through a focus on sustainable diets. However, transforming food systems towards more sustainable diets is challenging and it is unclear what the local scope of action might be. Co-production of knowledge between science and non-science is particularly useful for analysing context-specific solutions and promise to result in more robust socio-economic, political and technical solutions. Thus, this paper aims to integrate different types and sources of knowledge to understand urban food systems transformation towards a more sustainable diet in Vienna; and, second, to analyse and reflect on the difficulties and ways forward to integrate diverse actors’ perspectives, multiple methods and epistemologies. We created different future scenarios that illustrate the synergies and trade-offs of various bundles of measures and the interactions among single dimensions of sustainable diets. These scenarios show that there is plenty of scope for local action, but co-ordination across diverse groups, interests, and types of knowledge is necessary to overcome lock-ins

    Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis

    Get PDF
    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis
    • …
    corecore