17 research outputs found

    Adherence to a procalcitonin-guided antibiotic treatment protocol in patients with severe sepsis and septic shock

    Get PDF
    Background: In randomised controlled trials, procalcitonin (PCT)-guided antibiotic treatment has been proven to significantly reduce length of antibiotic therapy in intensive care unit (ICU) patients. However, concern was raised on low protocol adherence and high rates of overruling, and thus the value of PCT-guided treatment in real clinical life outside study conditions remains unclear. In this study, adherence to a PCT protocol to guide antibiotic treatment in patients with severe sepsis and septic shock was analysed. Methods: From 2012 to 2014, surgical ICU patients with severe sepsis or septic shock were retrospectively screened for PCT measurement series appropriate to make treatment decisions on antibiotic therapy. We compared (1) patients with appropriate PCT measurement series to patients without appropriate series; (2) patients who reached the antibiotic stopping advice threshold (PCT < 0.5 ng/mL and/or decrease to 10% of peak level) to patients who did not reach a stopping advice threshold; and (3) patients who were treated adherently to the PCT protocol to non-adherently treated patients. The groups were compared in terms of antibiotic treatment duration, PCT kinetics, and other clinical outcomes. Results: Of 81 patients with severe sepsis or septic shock, 14 were excluded due to treatment restriction or short course in the ICU. The final analysis was performed on 67 patients. Forty-two patients (62.7%) had appropriate PCT measurement series. In patients with appropriate PCT series, median initial PCT (p = 0.001) and peak PCT levels (p < 0.001) were significantly higher compared to those with non-appropriate series. In 26 patients with appropriate series, PCT levels reached an antibiotic stopping advice. In 8 of 26 patients with stopping advice, antibiotics were discontinued adherently to the PCT protocol (30.8%). Patients with adherently discontinued antibiotics had a shorter antibiotic treatment (7d [IQR 6–9] vs. 12d [IQR 9–16]; p = 0.002). No differences were seen in terms of other clinical outcomes. Conclusion: In patients with severe sepsis and septic shock, procalcitonin testing was irregular and adherence to a local PCT protocol was low in real clinical life. However, adherently treated patients had a shorter duration of antibiotic treatment without negative clinical outcomes. Procalcitonin peak values and kinetics had a clear impact on the regularity of PCT testing

    Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain

    No full text
    Oxidation of ferrous iron was studied with the anaerobic phototrophic bacterial strain BS-1. Based on morphology, substrate utilization patterns, arrangement of intracytoplasmic membranes and the in vivo absorption spectrum, this strain was assigned to the known species Rhodomicrobium vannielii. Also, the type strain of this species oxidized ferrous iron in the light. Phototrophic growth of strain BS-1 with ferrous iron as electron donor was stimulated by the presence of acetate or succinate as cosubstrates. The ferric iron hydroxides produced precipitated on the cell surfaces as solid crusts which impeded further iron oxidation after two to three generations. The complexing agent nitrilotriacetate stimulated iron oxidation but the yield of cell mass did not increase stoichiometrically under these conditions. Other complexing agents inhibited cell growth. Ferric iron was not reduced in the dark, and manganese salts were neither oxidized nor reduced. It is concluded that ferrous iron oxidation by strain BS-1 is only a side activity of this bacterium that cannot support growth exclusively with this electron source over prolonged periods of time

    Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium

    No full text
    Abstract A gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was faculaatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-β-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min−1 mg protein−1 as well as benzoyl-CoA synthetase activity of 86 nmol min−1 mg protein−1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts

    Complete assimilation of cysteine by a newly isolated non-sulfur purple bacterium resembling Rhodovulum sulfidophilum (Rhodobacter sulfidophilus)

    No full text
    A rod-shaped, motile, phototrophic bacterium, strain SiCys, was enriched and isolated from a marine microbial mat, with cysteine as sole substrate. During phototrophic anaerobic growth with cysteine, sulfide was produced as an intermediate, which was subsequently oxidized to sulfate. The molar growth yield with cysteine was 103 g mol 1, in accordance with complete assimilation of electrons from the carbon and the sulfur moiety into cell material. Growth yields with alanine and serine were proportionally lower. Thiosulfate, sulfide, hydrogen, and several organic compounds were used as electron donors in the light, whereas cystine, sulfite, or elemental sulfur did not support phototrophic anaerobic growth. Aerobic growth in the dark was possible with fructose as substrate. Cultures of strain SiCys were yellowish-brown in color and contained bacteriochlorophyll a, spheroidene, spheroidenone, and OH-spheroidene as major photosynthetic pigments. Taking the morphology, photosynthetic pigments, aerobic growth in the dark, and utilization of sulfide for phototrophic growth into account, strain SiCys was assigned to the genus Rhodovulum (formerly Rhodobacter) and tentatively classified as a strain of R. sulfidophilum. In cell-free extracts in the presence of pyridoxal phosphate, cysteine was converted to pyruvate and sulfide, which is characteristic for cysteine desulfhydrase activity (L-cystathionine g-lyase, EC 4.4.1.1)

    Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain

    No full text
    A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the e-subclass of the Proteobacteria closely related to Geospirillum arsenophilum on the basis of physiological properties and 16S rRNA sequence comparison. The Geospirillum strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner

    Ferrous iron oxidation by anoxygenic phototrophic bacteria

    No full text
    Natural oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea 1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4 6 or a photobiological process involving two photosystems7 9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10 14. The reducing power of ferrous iron increases dramatically at pH values higher than 2 3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E 0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E' 0 = -0.236V) or Fe(OH)3 + HCO- 3FeCO3 (E' 0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis
    corecore