7,278 research outputs found

    Automatic Estimation of Modulation Transfer Functions

    Full text link
    The modulation transfer function (MTF) is widely used to characterise the performance of optical systems. Measuring it is costly and it is thus rarely available for a given lens specimen. Instead, MTFs based on simulations or, at best, MTFs measured on other specimens of the same lens are used. Fortunately, images recorded through an optical system contain ample information about its MTF, only that it is confounded with the statistics of the images. This work presents a method to estimate the MTF of camera lens systems directly from photographs, without the need for expensive equipment. We use a custom grid display to accurately measure the point response of lenses to acquire ground truth training data. We then use the same lenses to record natural images and employ a data-driven supervised learning approach using a convolutional neural network to estimate the MTF on small image patches, aggregating the information into MTF charts over the entire field of view. It generalises to unseen lenses and can be applied for single photographs, with the performance improving if multiple photographs are available

    Performance of CAM based Safety Applications using ITS-G5A MAC in High Dense Scenarios

    Get PDF
    ETSI ITS-G5 is the current vehicle-to-vehicle communication technology in Europe, which will be standardized by ETSI TC ITS. It is based on IEEE 802.11p and therefore uses a CSMA/CA scheme for Media Access Control (MAC). In this paper we analyze the performance of CAM based safety applications using the ETSI ITS-G5 MAC technology in a challenging scenario with respect to MAC issues: A suitable freeway segment with 6 lanes in each direction. The freeway scenario is thoroughly modeled and implemented in the well known ns-3 simulation environment. Based on this model, the paper shows the performance of CAM based safety applications under MAC challenging conditions. Therefore we provide a set of simulation results resting upon a particular performance metric which incorporates the key requirements of safety applications. Finally we analyze two concrete example scenarios to make a point how reliable CAM based safety applications are in high dense traffic scenarios

    An Open Source Approach for Modern Teaching Methods: The Interactive TGUI System

    Get PDF
    In order to facilitate teaching complex topics in an interactive way, the authors developed a computer-assisted teaching system, a graphical user interface named TGUI (Teaching Graphical User Interface). TGUI was introduced at the beginning of 2009 in the Austrian Journal of Statistics (Dinges and Templ 2009) as being an effective instrument to train and teach staff on mathematical and statistical topics. While the fundamental principles were retained, the current TGUI system has been undergone a complete redesign. The ultimate goal behind the reimplementation was to share the advantages of TGUI and provide teachers and people who need to hold training courses with a strong tool that can enrich their lectures with interactive features. The idea was to go a step beyond the current modular blended-learning systems (see, e.g., Da Rin 2003) or the related teaching techniques of classroom-voting (see, e.g., Cline 2006). In this paper the authors have attempted to exemplify basic idea and concept of TGUI by means of statistics seminars held at Statistics Austria. The powerful open source software R (R Development Core Team 2010a) is the backend for TGUI, which can therefore be used to process even complex statistical contents. However, with specifically created contents the interactive TGUI system can be used to support a wide range of courses and topics. The open source R packages TGUICore and TGUITeaching are freely available from the Comprehensive R Archive Network at http://CRAN.R-project.org/.

    Feedback-based integration of the whole process of data anonymization in a graphical interface

    Get PDF
    The interactive, web-based point-and-click application presented in this article, allows anonymizing data without any knowledge in a programming language. Anonymization in data mining, but creating safe, anonymized data is by no means a trivial task. Both the methodological issues as well as know-how from subject matter specialists should be taken into account when anonymizing data. Even though specialized software such as sdcMicro exists, it is often difficult for nonexperts in a particular software and without programming skills to actually anonymize datasets without an appropriate app. The presented app is not restricted to apply disclosure limitation techniques but rather facilitates the entire anonymization process. This interface allows uploading data to the system, modifying them and to create an object defining the disclosure scenario. Once such a statistical disclosure control (SDC) problem has been defined, users can apply anonymization techniques to this object and get instant feedback on the impact on risk and data utility after SDC methods have been applied. Additional features, such as an Undo Button, the possibility to export the anonymized dataset or the required code for reproducibility reasons, as well its interactive features, make it convenient both for experts and nonexperts in R – the free software environment for statistical computing and graphics – to protect a dataset using this app
    • …
    corecore