9,593 research outputs found

    Multigrid Monte Carlo with higher cycles in the Sine Gordon model

    Full text link
    We study the dynamical critical behavior of multigrid Monte Carlo for the two dimensional Sine Gordon model on lattices up to 128 x 128. Using piecewise constant interpolation, we perform a W-cycle (gamma=2). We examine whether one can reduce critical slowing down caused by decreasing acceptance rates on large blocks by doing more work on coarser lattices. To this end, we choose a higher cycle with gamma = 4. The results clearly demonstrate that critical slowing down is not reduced in either case.Comment: 7 pages, 1 figure, whole paper including figure contained in ps-file, DESY 93-00

    Superconductivity in epitaxial thin films of NaxCoO2 y D2O

    Full text link
    The observation of superconductivity in the layered transition metal oxide NaxCoO2 y H2O (K. Takada et al., Nature 422, 53 (2003)) has caused a tremendous upsurge of scientific interest due to its similarities and its differences to the copper based high-temperature superconductors. Two years after the discovery, we report the fabrication of single-phase superconducting epitaxial thin films of Na0.3CoO2 x 1.3 D2O grown by pulsed laser deposition technique. This opens additional roads for experimental research exploring the superconducting state and the phase diagram of this unconventional material.Comment: 3 pages, 5 figure

    Colliding Particles in Highly Turbulent Flows

    Full text link
    We discuss relative velocities and the collision rate of small particles suspended in a highly turbulent fluid. In the limit where the viscous damping is very weak, we estimate the relative velocities using the Kolmogorov cascade principle.Comment: 5 pages, no figures, v2 contains additional result

    Fingerprints of Random Flows?

    Full text link
    We consider the patterns formed by small rod-like objects advected by a random flow in two dimensions. An exact solution indicates that their direction field is non-singular. However, we find from simulations that the direction field of the rods does appear to exhibit singularities. First, ` scar lines' emerge where the rods abruptly change direction by π\pi. Later, these scar lines become so narrow that they ` heal over' and disappear, but their ends remain as point singularities, which are of the same type as those seen in fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure

    Die Wachstumstheorie im Widerspiel von Mikro- und Makroansatz

    Get PDF

    Coagulation by Random Velocity Fields as a Kramers Problem

    Full text link
    We analyse the motion of a system of particles suspended in a fluid which has a random velocity field. There are coagulating and non-coagulating phases. We show that the phase transition is related to a Kramers problem, and use this to determine the phase diagram, as a function of the dimensionless inertia of the particles, epsilon, and a measure of the relative intensities of potential and solenoidal components of the velocity field, Gamma. We find that the phase line is described by a function which is non-analytic at epsilon=0, and which is related to escape over a barrier in the Kramers problem. We discuss the physical realisations of this phase transition.Comment: 4 pages, 3 figure

    Bandwidth-Controlled Insulator-Metal Transition and Correlated Metallic State in 5dd Transition Metal Oxides Srn+1_{n+1}Irn_{n}O3n+1_{3n+1} (nn=1, 2, and \infty)

    Get PDF
    We investigated the electronic structures of the 5dd Ruddlesden-Popper series Srn+1_{n+1}Irn_{n}O3n+1_{3n+1} (nn=1, 2, and \infty) using optical spectroscopy and first-principles calculations. As 5dd orbitals are spatially more extended than 3dd or 4dd orbitals, it has been widely accepted that correlation effects are minimal in 5dd compounds. However, we observed a bandwidth-controlled transition from a Mott insulator to a metal as we increased nn. In addition, the artificially synthesized perovskite SrIrO3_{3} showed a very large mass enhancement of about 6, indicating that it was in a correlated metallic state

    The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

    Get PDF
    The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes
    corecore