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Image Processing and Concentric Ellipse Fitting 
to Estimate the Ellipticity of Steel Coils 

Daniel C. H. Schleicher and Bernhard G. Zagar 
Johannes Kepler University (Institute for Measurement Technology) 

Austria 

1. Introduction 

In this chapter a particular image processing problem existing in quality assurance for steel 
industry is addressed. Since the quality standards in steel industry are ever increasing, even 
steel industry starts to use machine vision systems to monitor their product quality. In case 
of steel coils a particular figure of merit in quality is the roundness (ellipticity) or lack 
thereof of the coil. The mathematical correct measure of the roundness is the eccentricity 

, with the major semi axis a and the minor semi axis b. But the fastest way for the 

quality inspector is just to measure a and b of the coil and calculate their ratio . If 

ε exceeds a set limit (≈1.03 measured at the innermost coil layer), the coil is considered as 

cull. As discussed by Schleicher & Zagar (2008; 2009a) the extraction of elliptic arc segments 
for the ellipticity estimation and the basic concentric ellipse fitting algorithm are the main 
parts of the algorithm estimating the coils ellipticity. Comparing to ordinary ellipse fitting 
tasks that require input data distributed over the whole circumference, the estimation of the 
ellipse parameters using only data forming low length arcs is a much more challenging 
problem. To achieve a precise estimation of the ellipticity the fact of the common center of 
the elliptic arcs is used by the concentric ellipse fitting algorithm to estimate the center of the 
coil precisely. The functionality of the algorithm is show based upon of real coil images. 
Indeed some error sources reduce the accuracy, which are discussed at the end of the 
chapter. The chapter is organized as follows: First the image acquisition system is described. 
Then the algorithm is explained consecutively in Sec. 3. Further sources of different errors 
are investigated in Sec. 4. Finally major results are presented (Sec. 5) and a conclusion (Sec. 
6) is given. 

2. Image acquisition system 

The image acquisition setup shown in Fig. 1a consists of a camera placed on a tripod, a laser 
trigger unit to initiate the acquisition and a laptop to store, process and view the images. A 
single image frame Iraw(x,y) of the coil is acquired, when the coil transported by a lifting 
ramp reaches its end position triggering a light barrier. The camera is a 1/2” monochrome 

firewire camera (AVT Guppy 146–B) with 1392×1040 pixels. Its optical zoom is adjusted so 
as to image the biggest coil full frame, which has an outer diameter of 2 m. The sheet metal 
layers are 0.5 to 2.5 mm thick and the inner diameter of each coil is known to be 0.6 m. To 

Source: Image Processing, Book edited by: Yung-Sheng Chen,  
 ISBN 978-953-307-026-1, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM
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ensure a circular image of a truly circular coil, the camera chip plane must be oriented 
parallel to the coils front side (Scheimpflug condition (Luhmann, 2003, p.147)). Figure 2 
shows the camera coordinate system  in relation to the world coordinate system 

, where the ξ, η–plane (coil front side) is kept parallel to the –plane (camera 

chip). To assure the correct alignment of the camera, a spirit level was used to do the 
horizontal alignment ( , –plane). Furthermore the horizontal edges of the coils carrier 
were used to align the rotation about the –axis that the coils front side is parallel to the 

camera chip plane. With this setup the image Iraw(x,y) is acquired and processed by the 
algorithm in the next section. 
 

 

 

(a) The the image Iraw(x,y) of the coil is 
captured by a firewire camera when the lift 
stops. 

(b) Captured image Iraw(x,y). 

Fig. 1. Image acquisition setup (a) and typical captured image (b). 
 

 
Fig. 2. The cameras , –plane is oriented parallel to the coils front side  – plane. 

3. Algorithm 

The block diagram of the algorithm, shown in Fig. 3, reflects the structure of this section. 

The preprocessing, circular hough transform and extraction of all curve segments Ca are 

applied on the pixel level and then a reduced dataset of selected curve segments Cs is used 

for the ellipticity estimation. 
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Fig. 3. Block diagram of the algorithm to estimate ellipticities. The preprocessing is done at 
pixel level prior to the ellipticity estimation done at curves level. 

3.1 Preprocessing 
The first preprocessing step is to crop Iraw(x,y) to the region of interest, which fits the biggest 
coil to capture. Further the unsharp masking sharpening algorithm Eqn 1 (Jain, 1989, 
pp.249– 251) is used to boost the edges of the coil. 

 (1) 

where G(x,y) is the discrete Laplacian 

 
(2) 

of the raw image. The parameter λ determines the sharpening power of the algorithm. 
Setting λ too large leads to a very noisy image result, since the Laplacian is very sensitive to 
noise. Since the sharpening process is similar to a high pass filter, any influence of the 
inhomogeneous natural lighting is reduced. 
The next important preprocessing step is the segmentation of the image into background 
and foreground pixels (front side highlighted in Fig. 1a). Usually this is done by comparing 
the actual image to a background image only (Zivkovic, 2004). Since only a single image of 
the coil is available this procedure can not be applied and the results of the circular hough 
transform are used to first find the coils center and then to segment the coils front side, 
which is described in the next section. 

3.2 Circular Hough Transform (CHT) 
The circular Hough transform (Illingworth & Kittler, 1987; Peng, 2007; Peng et al., 2007) is a 
transform mapping points in the x,y–plane belonging to circular slopes into parameter 
space. Thus filling a so called accumulator. A circle in x,y–space can be described by 

 (3) 

In parameter space it is then (xc,yc, r). This 3D parameter space can be reduced to a 2D with 
(xc,yc), we incorporate the constraint that the vectors, which are normal to the circle 
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boundary, must all intersect at the circle center (xc,yc). Figure 4 illustrates this relation 
between the circle and its center. These normal directions can be obtained by local gray–
level detection operators. The normal direction can also be expressed by 

 
(4) 

 

Fig. 4. Circle parameters for the circular Hough transform. The points on the circle (x,y) in 
image space is mapped onto a line in the accumulator. 

Rearranging Eqn 4 yields 

 (5) 

and transfers the problem in a form similar to the well known (line) Hough transform (HT). 
The accumulator of the HT, where the circles centers  is determined by the peak, is 

shown in Fig. 5a. Since the determined center is only a rough estimate (denoted by ˆ), the 
center (xc,yc). After incorporating the circle center  in Eqn 3, the radius can be found 

by histogramming, . This histogram, also called signature curve, 

shown in Fig. 5b, is used to obtain an estimate for the inner radius ri aswell as the outer 
 

 

 

(a) CHT accumulator of the coil depicted in 
Fig. 1b: The maximum indicates the center 
of the coil in parameter space. 

(b) Signature curve: Maxima indicate strong 
radii of circles. Signature curve (green) and 
smoothed signature curve (blue) with local 
maxima (blue asterisk) and selected maxima 
for inner and outer mask radius (red asterisk). 

Fig. 5. Accumulator and signature curve of the CHT of sample image of Fig. 1b. 
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radius ro (marked by a red asterisk). Local maxima in the signature curve are marked with a 
blue asterisk and signals the presence of a circular shape detected in the front side image. 
To reduce the execution time of the CHT algorithm the preprocessed image I(x,y) is resized 

(down sampled) to 150×170 pixels. 
Due to the reduced image size the center estimation is only very rough, though fast. 
Furthermore the two stage concept causes the error of the center estimate to propagate 
further to the radius estimation in the signature curve. That’s why the signature curve is not 
very reliable to return the proper real inner and outer radius, respectively. When no proper 
radii are found, the maximum coil size is chosen to segment the coil front side, since 
subsequent selection criteria will be applied to the curves before they are used for the fitting 
process. 

3.3 Curve extraction 
To extract arc curve segments at least of some of the sheet metal layers the Canny edge 
detector (Canny, 1986) is applied to I(x,y). As a result this edge detector creates a binarized 
image It(x,y) with thinned out edges. Due to the hysteresis threshold technique (Nixon & 
Aguado, 2002) implemented within the Canny edge detector, even weak edges are reliably 
extracted. As a drawback however, some edges, especially those resulting from rather weak 
gradients, have ramifications and squiggles that need to be taken care of. 
 

                                                          (a)                  (b)                  (c) 

 

Fig. 6. Different 3 ×3 erosion masks M1. . . (a), M2 . . . (b), M3. . . (c), are used to erode all 
possible types of ramifications of a thinned binary image. 

First the ramifications are removed by erosion (Gonzales & Woods, 2002, pp. 525–527) with 
the templates shown in Fig. 6 and their permutations by 0°, 90°, 180°and 270°. 

 
(6) 

 

 

Fig. 7. (a) is a cutout of the thinned binary edge image It(x,y), which is eroded by the 
templates shown in Fig. 6. (b) shows only points which are removed. (c) is the cutout of the 
resultant image Ic(x,y) without ramifications (a)–(b) 
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After the erosion, the resultant image Ic(x,y) contains only disrupted curve segments, which 

are remapped from the image matrix onto a curve set Ca = c1, . . . , cj, . . . , cJ , which contains 

all extracted curve segments denoted by cj (See Fig. 7). The curve segment cj is a M × 2 vector 

containing the curve pixels coordinates. 

3.4 Curve selection 

Since the extracted curve set Ca also contains curves derived from the edges of the coils tapes 

or packaging labels, which must not be processed in the ellipticity estimation algorithm, 

these curves must also be remove to increase the quality of the estimators input data. 

Therefore figures of merits are calculated to select only those that are kept for further 

processing (Cs) and reject straight lines, rather short and very squiggled curves. Useful 

figures of merit are the curve length and the extend, which is the ratio between curve 

bounding box and curve length. Furthermore closed curve segments, with an eccentricity e 

of the ellipse that has the same second-moments as the region (e = 0 is actually a circle; e = 1 

is an ellipse degenerated to a line segment) over a specific threshold (in this application 0.1 

turned out to be useful), are also rejected (Rafael C. Gonzalez, 2003). 
 

 

Fig. 8. The tangential vector of a circular arc is normal to the radius vector. (1) acts as a seed 
to an elliptic curve, (2) will be removed, (3) will be part of an elliptic curve, if it is connected 
to a seed point. 

To select only elliptic arc segments which are part of the coil the scalar product of nr = r/|r|, 

the normalized radius vector, and t, the tangential vector, is calculated for each point on 

each arc curve segment cj. Figure 8 shows two curves with typical cases indicated. 

Concerning an ideal round coil, the scalar product nr · t = 0 for each arc segment. Since nr 

and t are normalized, the range of the result of the scalar product is [0, . . . ,1]. The 

subsequently applied hysteresis thresholding technique (Nixon & Aguado, 2002) returns 

only reasonable curve segments for the final ellipticity estimation algorithm. 

3.5 Ellipticity estimation 

To estimate the ellipticity ε an ellipse fit is applied to the dataset. Curve fitting is an 

extensive topic and even ellipse fitting is discussed in literature very detailed (Gander et al., 

1994; Matei & Meer, 2000b; Leedan & Meer, 2000; Halir, 1998; Ahn et al., 2001; Nair & 

Saunders, 1996; Liu et al., 2006; Lei &Wong, 1999; Fitzgibbon et al., 1999; Halir, 1998). 
The paper written by Gander et al. (1994), was one of the first that covered circle and ellipse 

fitting using least squares and iterative methods. 
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Figure 10 shows typical fitting results when applying the general ellipse fit algorithm to the 

previously extracted arc segment dataset Cs. Obviously, the common center of the coil can’t 

be reliably determined, since the general ellipse fit algorithm is executed only for one arc 
segment at a time. This renders it necessary to consider additional constraints for the fitting 
algorithm and adopt it to use the whole dataset with all arc segments simultaneously. 
In the following sections first the chosen curve fitting algorithm is described on a general 
way. Then the general, the simple and the new concentric ellipse fit, which incorporates the 
fact of the common coil center, is described in more detail. 
 

 

Fig. 9. Plot of the selected elliptic curve segments Cs used for the subsequent ellipticity 

estimation. 

 

Fig. 10. Ellipse fitting of curve segments without any constraints leads to unusable results 
for the ellipticity estimation problem of a coil. 

3.5.1 Curve fitting 
Before doing the ellipse fit, a short introduction into curve fitting will be given. Therefore 
the same notation as proposed by Chernov (2007) will be used. 
The principal equation for algebraic curve fitting is 
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 (7) 

with u(x) = [u1(x), . . . ,uL(x)]T, which is the data transformed in a problem-dependent 

manner and Θ = [θ1, . . . , θL]T, which contains the L unknown variables. The measured data 
vector x = [x1, . . . , xI ]T is an I element long vector, assumed to represent the true data  

corrupted by some random noise δxi (here assumed to be normally distributed with 

N(0,σ2I)). 

 (8) 

To estimate Θ the approximate maximum likelihood (AML) method (Chernov, 2007) is 
used. 

        
(9) 

 
(10)

The square matrices Ai and Bi depend only on xi and have the size L ×L. 

 (11)

 (12)

Using these matrices for the representation of the input data many popular schemes can be 
used to solve the minimization problem: 

• (TAU) Taubin’s fit (Taubin, 1991) 

• (HEIV) Heteroscedastic errors–in–variables (Leedan & Meer, 2000; Matei & Meer, 2000a) 

•  (FNS) Fundamental numerical scheme (Chojnacki et al., 2001; 2005; 2004) 

•  (RED) Reduced scheme (Kanatani, 2005) 

•  (REN) Renormalization procedure (Kanatani, 2005; 1997; 2008) 
All of the above algorithms were tested for the concentric ellipse fitting problem and only 
REN showed unstable behavior. The other algorithms only vary in execution time and 
achieved accuracy, which is also dependent on the maximum number of iterations and the 
set tolerances. For additional information about these schemes we refer to Chernov (2007). 

In the following sections the way to obtain the Ai and Bi matrices, ∇xu(xi) and u(xi), 
respectively, will be described. 

3.5.2 General ellipse fitting 
A general ellipse can be described by the equation for the algebraic distance 

 (13)

To obtain the unknown parameters A, . . . , F of Eqn 13 the AML method is used. Therefore 
the equation is written in terms u(x) and Θ. 

 (14)
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(15)

  (16)

Further we obtain 

                                  (17)

           

(18)

and 

                                 (19)

        

(20)

with 

 
(21)

3.5.3 Simple ellipse fitting 
The denotation simple ellipse fitting (SEF) is used when the simplest form of an ellipse, with 
the center at the origin (0,0) and no rotation, is to be fitted. Equation 13 is then simplified to 

 
(22)

Here a and b are the major and minor semi axes and u and v are the coordinates related to 
the semi axis of the ellipse. To obtain u and v the ellipse must be centered in the origin thus: 

 (23)

 (24)

For Ai and Bi calculated by Eqn 12 we further need 

 (25)
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(26)

 (27)

and 

 
(28)

to calculate Ai and Bi. 

3.5.4 Concentric ellipses fitting 

The concentric ellipse fit takes the whole dataset Cs of the coils elliptic arc segments into 

account, in contrast to the previously discussed algorithms, which use only one curve 

segment at a time. Thereby a highly precise center estimation is possible. To achieve this, 

some simplifications needs to be made: 

• The rotation of the ellipses is zero. 

• The ellipticity of all elliptic curve segments is equal. 
For a typical coil the first assumption is justifiable since mainly the acting force of gravity 

determines the orientation of the semi major axis to be horizontal. Further the requirement 

of constant ellipticity for all elliptic curve segments doesn’t hold here exactly and will cause 

a small error, but the center estimation is not affected by this fact (Schleicher & Zagar, 

2009b).  

First Eqn 13 is rewritten using the center coordinate (xc,yc) and the semi axes a and b. 

 

(29)

Introducing  and factorizing  leads to 

 

(30)

Concerning Eqn 30 the newly introduced parameters A’, . . . ,E’ are independent on b, while 

F’ contains the curve dependent parameter b. Therefore Θ must now be written as 

 
(31)
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using all curve segments in the dataset Cs, which is indexed as follows: The dataset contains 

J curves indexed by j, where curve j has Mj points. A point on curve j is denoted by (xj,m,yj,m), 
where m is the index of the point (m = 1, . . . ,M). 

 

(32)
(33)

When concatenating the curves to the input data vector x a point is addressed by index i. 

        

(34)

                        
(35)

Furthermore u(x) must also be extended to 

 

(36)

In the general sense we can write 

 
(37)

For the gradient we obtain 

 
(38)

Having u(xi) given the matrices Ai and Bi are calculated and Θ is estimated using one of the 
estimators described in Sec. 3.5.1. 

Out of all parameters in Θ jointly estimated the center coordinate (xc,yc) and parameter ε and 

b are calculated. 

First the parameter vector Θ is normalized so that C is set 1. By comparison of coefficients 
the center coordinate (xc,yc) are obtained: 

   
(39)

 
(40)

Since the other parameters ε and b 

 
(41)

www.intechopen.com



 Image Processing 

 

214 

 

 
(42)

 

(43)

are biased due to the (invalid) assumption of equal ellipticity of all segments the simple 
ellipse fit (Sec.3.5.3) is done for each curve separately, using the previously estimated center 
coordinate (xc,yc). 

The result of the concentric ellipse fit followed by the simple ellipse fit, where the ellipticity 

εj for each curve segment is calculated (shown in Fig.13) and discussed after the error 

analysis in Sec. 5. 

4. Error analysis 

In the following sections the main error sources which influence the accuracy of the 
estimated ellipticity will be discussed. 

4.1 Aliasing 
When sampling in spatial coordinates the aliasing effect (Jähne, 2002; Burger & Burge, 2006) 
is similar to consider as the case in the time domain. To be able to reconstruct a sampled 
signal the sampling frequency fs must be larger than twice the largest occurring frequency 
component fc. In case of the coil image the thinnest sheet metal layer is 0.5 mm, which means 
fc = 0.5 mm/layer. Since the Nyquist criterion is also valid for any orientation the spatial 

frequencies fc must be multiplied by  

 (44)

For a coil with a diameter of 2 m a minimum camera chip size of 

 
(45)

in horizontal and vertical direction, respectively, is needed. This corresponds to a 32 Mpixel 
camera chip. Even if we neglect  –factor for the diagonal layers, we still would require a 

camera chip with 4000 × 4000 = 16 Mpixel. 
Luckily the small axial displacement of the sheet metal layers with respect to each other 
causes some shadings which can be captured very good avoiding aliasing. Also the 
roughly–textured cut surface of most thick sheet metal layers improves the possibility to 
recognize a single layer. In the worst case when a coil has thin layers, these layers appear 
blurred in the image. 
Further the goal is still to estimate the ellipticity and not to capture each layer. Assuming 
that the arc segment is recognized only by its shadow which extends from one layer to the 
next (one pixel = 2.5 mm in this setup), the relative error for the ellipticity is bounded by 

 
(46)
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with the major semi axis a = 0.3 m and the arc displacement Δa = 2.5 mm. Considering fε this 

error is quite large for high precise ellipticity estimation. 

4.2 Camera orientation 
One possible error source is the miss–orientation of the camera. As described previously the 
camera chip plane should be oriented strictly parallel to the coils front side. Even when the 
setup is build up very carefully using a spirit level and using edges of the coils carrier for 
the adjustment, an error free orientation can not be obtained. For a circular coil, with radius 

r and a misalignment angle ϕ, a rough error estimate can easily be obtained: 

 
(47)

The angle ϕ can have any direction, since the semi major axis of the resulting ellipse is 

always r and the semi minor axis is r cos ϕ. Assuming ϕ = 1° leads to an error of 0.0152% 
and even a larger angle of 5°, which should be possible to underbid when adjusting the 
camera, leads only to 0.55%. 
 

 

Fig. 11. Between each Δs thick sheet metal layer is a small oil gap Δy and Δx in x and y 
direction. an and bn are the semi major and minor axes of the nth layer. 

4.3 Ellipticity–radius dependency 

The assumption of equal ellipticity for all arc segments made in Sec. 3.5.4 leads to a 

erroneous ε. Knowing the dimensions of the coil a simulation of the ellipticity progression 

can be done using the following model. 
Assume an ideal circular coil with the inner radius ri, outer radius ro, metal sheet thickness 

Δs and initial oil gap Δr between the layers (see Fig.11). Approximating the layers of the coil, 
which in reality are forming an so–called Euler’s–spiral, by concentric circular layers, the 
radius of the nth layer r(n) is 

 (48)

The assumed maximum number of turns on the coil is 
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 (49)

When applying a virtual vertically acting force (e.g. gravity) on this coil, it is compressed 

somewhat flat, the layers get elliptic and the oil gap Δy(n) decreases in vertical direction 

while Δx(n) increases in horizontal direction. Optionally, the oil gap can be modeled to be 
smaller at the middle layers, since there is a higher inner pressure caused by the winding 
action in production, by following equation: 

 
(50)

Or, since the oil gap is very small in ratio to the metal sheet thickness, to be a constant 
setting = 1. For the vertical minor semi axis of the coil we obtain: 

 
(51)

where 
 
is the compression ratio of the inner radius. 

Since the mass of the circular coil mc is equal to the mass of the deformed coil md, also the cut 

surface of the metal sheet layers must be the same (̶ . . . density of steel, w. . . width of the coil). 

 (52)

 (53)

The areas are calculated by 

 (54)

 (55)

Resolving a(n) using Eqns 53, 54 and 55 we obtain 

 
(56)

Figure 12 shows two simulations of the ellipticity dependency over the turn number for 

various coil parameter. The layer dependent oil gap Δy(i) has the most effect on coils with 
thin metal sheets (see Fig. 12c vs. Fig. 12d). Generally the ellipticity decreases strongest 

within the first third of the radius. Setting Δy(i) = 0.001 mm and smaller gives similar results 
like shown in Fig. 12a. Since the exact conditions of the pressure distribution in the oil gap is 
unknown and no proper literature could be found considering this problem, this simulation 
can only give a qualitative evidence for the ellipticity progression. 

4.4 Estimation errors 
A comprehensive analysis of the estimation errors was done by Schleicher & Zagar (2009b), 
whose results are summarized in this section shortly. Using synthetic curve datasets, similar 

to Cs the different estimators where evaluated. First the CEF algorithm was applied onto 

1500, 5000 and 20000 synthetic datasets. Then the Euclidean distance between d the true 
 

www.intechopen.com



Image Processing and Concentric Ellipse Fitting to Estimate the Ellipticity of Steel Coils  

 

217 

 

Fig. 12. Simulation of the ellipticity ε = f (n) for different inner ellipticities. (Δy = 0.01 mm,ri = 

0.3 m,ro = 1 m, β = (1.005, 1.010, 1.015, 1.020, 1.025,1.030)) 

center  and estimated center xc = (xc,yc) was calculated, which corresponds to the 
error of the center estimation. 

 (57)

 
(58)

With increasing number of datasets μd decreases, justifying and proofing that the CEF 

algorithm has no bias. Using the best performing HEIV algorithm an error of 0.00251±0.251 

pixel distance to 
c

x  the was obtained. The variance was very similar for all algorithms and is 

probably limited by the quantisation of the dataset itself. 
Furthermore the SEF algorithm was examined, concerning an erroneous center coordinate 
as input and arc segments with various center angles and lengths. The result was, that for a 
center displacement of (1,1) (which is very large in relation to σd) the relative ellipticity error 

 was smaller than 0.2 ± 0.3% for all algorithms (except Taubins) when curve 

segments with a length longer than 1/25 of their circumference where used. Furthermore 
arcs symmetric around the ellipses apex lead to larger errors than others. 
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Fig. 13. Elliptic arc segments are extracted from the image of the coils front side, and used to 
estimate the ellipticity. 

 

Fig. 14. The estimated ellipticities of the arc segments are plotted over the major semi axis. 

5. Results 

Figure 13 shows the results of the algorithm described in Sec. 3. The estimated parameters of 
the extracted curve segments are used to overlay the ellipses onto the image of the coils 

front side. Furthermore the estimated ellipticities εj are plotted over their major semi axis aj 

in Fig. 14. Moreover some possible figures of merits, which could characterize the coils 
quality, are plotted. Depending on the extracted curve segments, the model of ellipticity 
progression derived in Sec. 4.3 fits more or less perfect. The main error source results from 
the low camera resolution, which might be changed in future when the cost of high 
resolution cameras decrease. 
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6. Conclusion 

This chapter introduced the problem of ellipticity estimation on hand of a practical problem. 
To obtain a good ellipticity estimation proper datasets must be obtained. These datasets are 
generally not very easy to obtain, for which reason also the preprocessing to extract the 
datasets was discussed in detail. Since only arc segments could be used for the ellipticity 
estimation, normal ellipticy fits fail. Hence the estimation was split into two parts, first to 
estimate the center of the coil with the concentric ellipticity estimator and then to estimate 
the ellipticity of the arc segments. Using the general approach for the ellipse fit, enables also 
to use different solver implementations for fitting problems. When discussing the errors, it 
was accented that a lot of error sources affect the final result. The correct understanding of 
the partial errors helps to optimize the corresponding section of the algorithm. 
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