1,744 research outputs found

    Are You Awed Yet? How Virtual Reality Gives Us Awe and Goose Bumps

    Get PDF
    “Awe” is a category of emotion within the spectrum of self-transcendent experiences. Awe has wellness benefits, with feelings of social interconnectivity and increased life satisfaction. However, awe experiences remain rare in our everyday lives, and rarer in lab environments. We posit that Virtual Reality (VR) may help to make self-transcendent and potentially transformative experiences of awe more accessible to individuals. Here, we investigated how interactive VR as a positive technology may elicit awe, and how features of aesthetic beauty/scale, familiarity, and personalization (self-selection of travel destinations) may induce awe. In this mixed-methods study, participants used an interactive VR system to explore Earth from ground and orbit. We collected: introspective interviews and self-report questionnaires with participants’ experience of awe; information on personality traits and gender; and we recorded physiological goose bumps on the skin (using an arm-mounted goose bump camera instrument), which is a documented marker of an awe experience. Results showed that on a scale of 0–100 for self-reported awe, four different interactive VR environments yielded an average awe rating of 79.7, indicating that interactive VR can indeed induce awe. 43.8% of participants experienced goose bumps: awe ratings positively correlated with the occurrence of goose bumps with those who experienced goose bumps having showed significantly higher ratings of awe than those who did not. Most (64%) of the goose bumps occurred when participants self-selected their VR environment. Participant statements from the interviews were characteristic of an awe-inspiring experience, revealed themes of social connection, and usability problems with the VR interface. Personality traits yielded no clear correlation to awe ratings, and females appear to experience more goose bumps than males. In summary: (1) Interactive VR can elicit awe, especially within familiar, self-selected environments; (2) Physiological goose bumps can be recorded to provide reliable, non-intrusive indications of awe; (3) Care must be taken to design interaction interfaces that do not impede awe; and (4) While personality traits are not correlated to awe ratings, goose bumps were experienced more frequently among females. We aim to conduct future studies using custom VR environments, interfaces, and additional physiological measures to provide further insight into awe

    Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy

    Get PDF
    Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme has two structurally interlinked active sites embedded in an α2ÎČ2Îł2 subunit structure. Each active site has the nickel porphyrinoid F430 as a prosthetic group. In the active state, F430 contains the transition metal in the Ni(I) oxidation state. The active enzyme exhibits an axial Ni(I)-based continuous wave (CW) electron paramagnetic resonance (EPR) signal, called red1a in the absence of substrates or red1c in the presence of coenzyme M. Addition of coenzyme B to the MCR-red1 state can partially and reversibly convert it into the MCR-red2 form, which shows a rhombic Ni(I)-based EPR signal (at X-band microwave frequencies of approximately 9.4GHz). In this report we present evidence from high-field/high-frequency CW EPR spectroscopy (W-band, microwave frequency of approximately 94GHz) that the red2 state consists of two substates that could not be resolved by EPR spectroscopy at X-band frequencies. At W-band it becomes apparent that upon addition of coenzyme B to MCR in the red1c state, two red2 EPR signals are induced, not one as was previously believed. The first signal is the well-characterized (ortho)rhombic EPR signal, thus far called red2, while the second previously unidentified signal is axial. We have named the two substates MCR-red2r and MCR-red2a after their rhombic and axial signals, respectivel

    Deep Learning for Classification of Peak Emotions within Virtual Reality Systems

    Get PDF
    Research has demonstrated well-being benefits from positive, ‘peak’ emotions such as awe and wonder, prompting the HCI community to utilize affective computing and AI modelling for elicitation and measurement of those target emotional states. The immersive nature of virtual reality (VR) content and systems can lead to feelings of awe and wonder, especially with a responsive, personalized environment based on biosignals. However, an accurate model is required to differentiate between emotional states that have similar biosignal input, such as awe and fear. Deep learning may provide a solution since the subtleties of these emotional states and affect may be recognized, with biosignal data viewed in a time series so that researchers and designers can understand which features of the system may have influenced target emotions. The proposed deep learning fusion system in this paper will use data collected from a corpus, created through collection of physiological biosignals and ranked qualitative data, and will classify these multimodal signals into target outputs of affect. This model will be real-time for the evaluation of VR system features which influence awe/wonder, using a bio-responsive environment. Since biosignal data will be collected through wireless, wearable sensor technology, and modelled through the same computer powering the VR system, it can be used in field research and studios

    Space—A Virtual Frontier: How to Design and Evaluate a Virtual Reality Experience of the Overview Effect

    Get PDF
    A select small group of people have an amazing opportunity to see the Earth from a unique perspective—from space. The effect this experience has on an individual has been described as extraordinary and profound, consisting of a cognitive shift in worldview that leads to a deeper understanding of the fragility and vulnerability of our planet, and an increased feeling of connectedness. This experience, termed the “Overview Effect,” has been reported by many space-travelers. Its key outcome—an enhanced feeling of interconnectedness—contributes to both one’s well-being and the sense of responsibility for the Earth. If this profoundly positive experience could be made accessible to more people than just space-travelers, this might ultimately contribute to a healthier and more caring society, where more individuals deeply feel the interconnection of all living beings and responsibility for our collective future. Given virtual reality (VR) technology’s potential to induce experiences affecting an immersant in a similar way as a real experience, we see an opportunity to leverage this technology to attempt to elicit the Overview Effect as a virtual experience. Through a virtual installation, the experience could be made accessible to people around the world, and for researchers to study this otherwise rare phenomenon. This article builds the case for VR as a tool for inducing and studying the Overview Effect. It reviews the psychological research on the Overview Effect and awe, and proposes guidelines for: (1) the design of VR experiences to elicit an Overview Effect and (2) evaluation methods for assessing if, or to what degree, the experience was achieved. Finally, we discuss existing implementations of the Overview Effect in VR. Thus, we are making an applied contribution in the form of design guidelines, and contributions to knowledge in the form of a review of research related to the Overview Effect. We invite researchers and VR creators to utilize and expand on the guidelines proposed in this paper to design transformative VR experiences that induce positive change, and promote a feeling of connectedness and care for each other, and our Spaceship Earth

    Understanding AWE: Can a Virtual Journey, Inspired by the Overview Effect, Lead to an Increased Sense of Interconnectedness?

    Get PDF
    Immersive technology, such as virtual reality, provides us with novel opportunities to create and explore affective experiences with a transformative potential mediated through awe. The profound emotion of awe, that is experienced in response to witnessing vastness and creates the need for accommodation that can lead to restructuring of one\u27s worldview and an increased feeling of connectedness. An iconic example of the powers of awe is observed in astronauts who develop instant social consciousness and strong pro-environmental values in response to the overwhelming beauty of Earth observed from space. Here on Earth, awe can also be experienced in response to observing vast natural phenomenon or even sometimes in response to some forms of art, presenting vast beauty to its audience. Can virtual reality provide a new powerful tool for reliably inducing such experiences? What are some unique potentials of this emerging medium? This paper describes the evaluation of an immersive installation “AWE”—Awe-inspiring Wellness Environment. The results indicate that the experience of being in “AWE” can elicit some components of awe emotion and induce minor cognitive shifts in participant\u27s worldview similar to the Overview Effect, while this experience also has its own attributes that might be unique to this specific medium. Comparing the results of this exploratory study to other virtual environments designed to elicit Overview Effect provides insights on the relationship between design features and participant\u27s experience. The qualitative results highlight the importance of perceived safety, personal background and familiarity with the environment, and the induction of a small visceral fear reaction as a part of the emotional arc of the virtual journey—as some of the key contributers to the affective experience of the immersive installation. Even though the observed components of awe and a few indications of cognitive shift support the potential of Virtual Reality as a transformative medium, many more iterations of the design and research tools are required before we can achieve and fully explore a profound awe-inspiring transformative experience mediated through immersive technologies

    Changes in quality of life, depression, general anxiety, and heart-focused anxiety after defibrillator implantation

    Get PDF
    Aims The Anxiety-CHF (Anxiety in patients with Chronic Heart Failure) study investigated heart-focused anxiety (HFA, with the dimensions fear, attention, and avoidance of physical activity), general anxiety, depression, and quality of life (QoL) in patients with heart failure. Psychological measures were assessed before and up to 2 years after the implantation of an implantable cardioverter defibrillator (ICD) with or without cardiac resynchronization therapy defibrillator (CRT-D). Methods and results One hundred thirty-two patients were enrolled in this monocentric prospective study (44/88 CRT-D/ICD, mean age 61 ± 14 years, mean left ventricular ejection fraction 31 ± 9%, and 29% women). Psychological assessment was performed before device implantation as well as after 5, 12, and 24 months. After device implantation, mean total HFA, HFA-fear, HFA-attention, general anxiety, and QoL improved significantly. Depression and HFA-related avoidance of physical activity did not change. CRT-D patients compared with ICD recipients and women compared with men reported worse QoL at baseline. Younger patients (<median of 63 years) had higher levels of general anxiety and lower levels of HFA-avoidance at baseline than older patients. After 24 months, groups no longer differed from each other on these scores. Patients with a history of shock or anti-tachycardia pacing (shock/ATP; N = 19) reported no improvements in psychological measures and had significantly higher total HFA and HFA-avoidance levels after 2 years than participants without shock/ATP. Conclusions Anxiety and QoL improved after device implantation, and depression and HFA-avoidance remained unchanged. HFA may be more pronounced after shock/ATP. Psychological counselling in these patients to reduce HFA and increase physical activity should be considered

    Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool

    Get PDF
    The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC. The best sensitivity with a characteristic mass of m(0) = 11 ng P has been obtained with the pure Pd modifier, which also caused the lowest background level. The characteristic mass obtained with the mixed Pd + Ca modifier depended on the equipment used and was between m(0) = 9 ng P and m(0) = 15 ng P, and the background signal was higher. The major problem of Z-BC remains the relatively restricted linear working range

    Characterization of a short isoform of the kidney protein podocin in human kidney

    Get PDF
    BACKGROUND: Steroid resistant nephrotic syndrome is a severe hereditary disease often caused by mutations in the NPHS2 gene. This gene encodes the lipid binding protein podocin which localizes to the slit diaphragm of podocytes and is essential for the maintenance of an intact glomerular filtration barrier. Podocin is a hairpin-like membrane-associated protein that multimerizes to recruit lipids of the plasma membrane. Recent evidence suggested that podocin may exist in a canonical, well-studied large isoform and an ill-defined short isoform. Conclusive proof of the presence of this new podocin protein in the human system is still lacking. METHODS: We used database analyses to identify organisms for which an alternative splice variant has been annotated. Mass spectrometry was employed to prove the presence of the shorter isoform of podocin in human kidney lysates. Immunofluorescence, sucrose density gradient fractionation and PNGase-F assays were used to characterize this short isoform of human podocin. RESULTS: Mass spectrometry revealed the existence of the short isoform of human podocin on protein level. We cloned the coding sequence from a human kidney cDNA library and showed that the expressed short variant was retained in the endoplasmic reticulum while still associating with detergent-resistant membrane fractions in sucrose gradient density centrifugation. The protein is partially N-glycosylated which implies the presence of a transmembranous form of the short isoform. CONCLUSIONS: A second isoform of human podocin is expressed in the kidney. This isoform lacks part of the PHB domain. It can be detected on protein level. Distinct subcellular localization suggests a physiological role for this isoform which may be different from the well-studied canonical variant. Possibly, the short isoform influences lipid and protein composition of the slit diaphragm complex by sequestration of lipid and protein interactors into the endoplasmic reticulum
    • 

    corecore