189 research outputs found

    What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benthivorous fish? A systematic review protocol

    Get PDF
    Background: In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve. In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination. The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind. Methods: The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes.A Systematic review to this article was published on 22 May 2015: ernes, C., Carpenter, S.R., Gårdmark, A. et al. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environ Evid 4, 7 (2015). DOI: 10.1186/s13750-015-0032-9Mistr

    Study of the glass transition in the amorphous interlamellar phase of highly crystallized poly(ethylene terephthalate)

    Full text link
    Poly(ethylene terephthalate) (PET) is a semi--crystalline polymer that can be crystallized to different degrees heating from the amorphous state. Even when primary crystallization has been completed, secondary crystallization can take place with further annealing and modify the characteristics of the amorphous interlamellar phase. In this work we study the glass transition of highly crystallized PET and in which way it is modified by secondary crystallization. Amorphous PET samples were annealed for 4 hours at temperatures between 140C and 180C. The secondary crystallization process was monitored by differential scanning calorimetry and the glass transition of the remaining interllamelar amorphous phase was studied by Thermally Stimulated Depolarization Currents measurements. Non--isothermal window polarization is employed to resolve the relaxation in modes with a well--defined relaxation time that are subsequently adjusted to several standard models. Analysis of experimental results, show that cooperativity is reduced to a great extend in the interlamellar amorphous regions. The evolution of the modes on crystallization temperature reveals that large scale movements are progressively replaced by more localized ones, with higher frequency, as crystallization takes place at higher temperatures. As a consequence, the glass transition temperature of the amorphous interlamellar phase tends to lower values for higher annealing temperatures. Evolution of calorimetric scans of the glass transition are simulated from the obtained results and show the same behaviour. The interpretation of these results in terms of current views about secondary crystallization is discussed.Comment: 30 pages, 5 tables, 12 figures; figure 5 modifie

    Molecular Line Emission from Gravitationally Unstable Protoplanetary Disks

    Get PDF
    In the era of high resolution submillimeter interferometers, it will soon be possible to observe the neutral circumstellar medium directly involved in gas giant planet (GGP) formation at physical scales previously unattainable. In order to explore possible signatures of gas giant planet formation via disk instabilities, we have combined a 3D, non-local thermodynamic equilibrium (LTE) radiative transfer code with a 3D, finite differences hydrodynamical code to model molecular emission lines from the vicinity of a 1.4 M_J self-gravitating proto-GGP. Here, we explore the properties of rotational transitions of the commonly observed dense gas tracer, HCO+. Our main results are the following: 1. Very high lying HCO+ transitions (e.g. HCO+ J=7-6) can trace dense planet forming clumps around circumstellar disks. Depending on the molecular abundance, the proto-GGP may be directly imageable by the Atacama Large Millimeter Array (ALMA). 2. HCO+ emission lines are heavily self-absorbed through the proto-GGP's dense molecular core. This signature is nearly ubiquitous, and only weakly dependent on assumed HCO+ abundances. The self-absorption features are most pronounced at higher angular resolutions. Dense clumps that are not self-gravitating only show minor self-absorption features. 3. Line temperatures are highest through the proto-GGP at all assumed abundances and inclination angles. Conversely, due to self-absorption in the line, the velocity-integrated intensity may not be. High angular resolution interferometers such as the Submillimeter Array (SMA) and ALMA may be able to differentiate between competing theories of gas giant planet formation.Comment: 10 pages, 13 figures; Accepted by Ap

    Plants as De-Worming Agents of Livestock in the Nordic Countries: Historical Perspective, Popular Beliefs and Prospects for the Future

    Get PDF
    Preparations derived from plants were the original therapeutic interventions used by man to control diseases (including parasites), both within humans and livestock. Development of herbal products depended upon local botanical flora with the result that different remedies tended to develop in different parts of the world. Nevertheless, in some instances, the same or related plants were used over wide geographic regions, which also was the result of communication and/or the importation of plant material of high repute. Thus, the Nordic countries have an ancient, rich and diverse history of plant derived anthelmintic medications for human and animal use. Although some of the more commonly used herbal de-wormers were derived from imported plants, or their products, many are from endemic plants or those that thrive in the Scandinavian environment. With the advent of the modern chemotherapeutic era, and the discovery, development and marketing of a seemingly unlimited variety of highly efficacious, safe synthetic chemicals with very wide spectra of activities, herbal remedies virtually disappeared from the consciousness – at least in the Western world. This attitude is now rapidly changing. There is a widespread resurgence in natural product medication, driven by major threats posed by multi-resistant pest, or disease, organisms and the diminishing public perceptions that synthetic chemicals are the panacea to health and disease control. This review attempts to provide a comprehensive account of the depth of historical Nordic information available on herbal de-wormers, with emphasis on livestock and to provide some insights on potentially rewarding areas of "re-discovery" and scientific evaluation in this field

    Dielectric study of the glass transition: correlation with calorimetric data

    Full text link
    The glass transition in amorphous poly(ethylene terephthalate) is studied by thermally stimulated depolarization currents (TSDC) and differential scanning calorimetry (DSC). The ability of TSDC to decompose a distributed relaxation, as the glass transition, into its elementary components is demonstrated. Two polarization techniques, windows polarization (WP) and non-isothermal windows polarization (NIW), are employed to assess the influence of thermal history in the results. The Tool-Narayanaswami-Moynihan (TNM) model has been used to fit the TSDC spectra. The most important contributions to the relaxation comes from modes with non-linearity (x) around 0.7. Activation energies yield by this model are located around 1eV for polarization temperature (Tp) below 50C and they raise up to values higher than 8eV as Tp increases (up to 80C). There are few differences between results obtained with WP and NIW but, nonetheless, these are discussed. The obtained kinetic parameters are tested against DSC results in several conditions. Calculated DSC curves at several cooling and heating rates can reproduce qualitatively experimental DSC results. These results also demonstrate that modelization of the non-equilibrium kinetics involved in TSDC spectroscopy is a useful experimental tool for glass transition studies in polar polymers.Comment: 13 pages, 2 tables, 10 figures; minor change

    Tracing the envelopes around embedded low-mass young stellar objects with HCO+ and millimeter-continuum observations

    Get PDF
    Interferometer observations of millimeter-continuum (OVRO) and single-dish observations of HCO+ and H13CO+ J=1-0, 3-2, and 4-3 (JCMT, IRAM 30m) are presented of nine embedded low-mass young stellar objects (YSOs) in Taurus. All nine objects are detected at 3.4 and 2.7 mm, with fluxes of 4-200 mJy, and consist of unresolved (<3 arcsec) point sources, plus, toward about half of the objects, an extended envelope. The point sources likely are circumstellar disks, showing that these are established early in the embedded phase. Literature values of 1.1 mm continuum emission are used to trace the envelopes, carrying 0.001-0.26 M(sol). In HCO+, the 1-0 lines trace the surrounding clouds, while the 3-2 and 4-3 are concentrated toward the sources with intensities well correlated with the envelope flux. An HCO+/H2 abundance of 1.2e-8 is derived. The HCO+ line strengths and envelope fluxes can be fit simultaneously with the simple collapse model of Shu (1977), and related density power laws with slopes p=1-3. As an indicator of the relative evolutionary phase of a YSO, the ratio of HCO+ 3-2 line intensity over bolometric luminosity is proposed, which is roughly proportional to the current ratio of envelope over stellar mass. It is concluded that HCO+ 3-2 and 4-3 are excellent tracers of the early embedded phase of star formation.Comment: 45 pages, 10 figures, ApJ/AASLaTeX. To be published in The Astrophysical Journa

    Modelling CO emission from Mira's wind

    Full text link
    We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new observational constraints. These are obtained from photospheric light scattered in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6 micron: absolute fluxes, the radial dependence of the scattered intensity, and two line ratios. Further observational constraints are provided by ISO observations of far-IR emission lines from highly excited rotational states of the ground vibrational state of CO, and radio observations of lines from rotational levels of low excitation of CO. A code based on the Monte-Carlo technique is used to model the circumstellar line emission. We find that it is possible to model the radio and ISO fluxes, as well as the highly asymmetric radio-line profiles, reasonably well with a spherically symmetric and smooth stellar wind model. However, it is not possible to reproduce the observed NIR line fluxes consistently with a `standard model' of the stellar wind. This is probably due to incorrectly specified conditions of the inner regions of the wind model, since the stellar flux needs to be larger than what is obtained from the standard model at the point of scattering, i.e., the intermediate regions at approximately 100-400 stellar radii (2"-7") away from the star. Thus, the optical depth in the vibrational-rotational lines from the star to the point of scattering has to be decreased. This can be accomplished in several ways. For instance, the gas close to the star (within approximately 2") could be in such a form that light is able to pass through, either due to the medium being clumpy or by the matter being in radial structures (which, further out, developes into more smooth or shell-like structures).Comment: 18 pages, 3 figures, accepted for publication in Ap

    Molecular line radiative transfer in protoplanetary disks: Monte Carlo simulations versus approximate methods

    Full text link
    We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions (J_{\rm up} \ga 3) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.Comment: 47 pages, 12 figures, accepted for publication in Ap

    Probing Intermolecular H-Bonding Interactions in Cyanuric Acid Networks: Quenching of the N K-Edge Sigma Resonances

    Get PDF
    The electronic characterization of the cyanuric acid both in gas phase and when embedded within an H-bonded scheme forming a monolayer on the Au(111) surface has been performed by means of X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The experimental spectra at the N, O, and C K-edges have been assigned with the support of DFT calculations, and the combination between theory and experiment has allowed to us investigate the effect of the H-bonding intermolecular interaction on the spectra. In particular, the H-bond formation in the monolayer leads to a quenching of the N 1s NEXAFS resonances associated with transitions to the sigma empty orbitals localized on the N-H portion of the imide group. On the other hand, the pi* empty states remain substantially unperturbed. From a computational point of view, it has been shown that the DFT-TP scheme is not able to describe the N 1s NEXAFS spectra of these systems, and the configuration mixing has to be included, through the TDDFT approach in conjunction with the range-separated XC CAM-B3LYP functional, to obtain a correct reproduction of the N 1s core spectra

    Primordial helium recombination. I. Feedback, line transfer, and continuum opacity

    Get PDF
    Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated
    corecore