196 research outputs found

    What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benthivorous fish? A systematic review protocol

    Get PDF
    Background: In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve. In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination. The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind. Methods: The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes.A Systematic review to this article was published on 22 May 2015: ernes, C., Carpenter, S.R., Gårdmark, A. et al. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environ Evid 4, 7 (2015). DOI: 10.1186/s13750-015-0032-9Mistr

    Molecular Star Formation Rate Indicators in Galaxies

    Full text link
    We derive a physical model for the observed relations between star formation rate (SFR) and molecular line (CO and HCN) emission in galaxies, and show how these observed relations are reflective of the underlying star formation law. We do this by combining 3D non-LTE radiative transfer calculations with hydrodynamic simulations of isolated disk galaxies and galaxy mergers. We demonstrate that the observed SFR-molecular line relations are driven by the relationship between molecular line emission and gas density, and anchored by the index of the underlying Schmidt law controlling the SFR in the galaxy. Lines with low critical densities (e.g. CO J=1-0) are typically thermalized and trace the gas density faithfully. In these cases, the SFR will be related to line luminosity with an index similar to the Schmidt law index. Lines with high critical densities greater than the mean density of most of the emitting clouds in a galaxy (e.g. CO J=3-2, HCN J=1-0) will have only a small amount of thermalized gas, and consequently a superlinear relationship between molecular line luminosity and mean gas density. This results in a SFR-line luminosity index less than the Schmidt index for high critical density tracers. One observational consequence of this is a significant redistribution of light from the small pockets of dense, thermalized gas to diffuse gas along the line of sight, and prodigious emission from subthermally excited gas. At the highest star formation rates, the SFR-Lmol slope tends to the Schmidt index, regardless of the molecular transition. The fundamental relation is the Kennicutt-Schmidt law, rather than the relation between SFR and molecular line luminosity. We use these results to make imminently testable predictions for the SFR-molecular line relations of unobserved transitions.Comment: ApJ Accepted - Results remain same as previous version. Content clarified with Referee's comment

    Study of the glass transition in the amorphous interlamellar phase of highly crystallized poly(ethylene terephthalate)

    Full text link
    Poly(ethylene terephthalate) (PET) is a semi--crystalline polymer that can be crystallized to different degrees heating from the amorphous state. Even when primary crystallization has been completed, secondary crystallization can take place with further annealing and modify the characteristics of the amorphous interlamellar phase. In this work we study the glass transition of highly crystallized PET and in which way it is modified by secondary crystallization. Amorphous PET samples were annealed for 4 hours at temperatures between 140C and 180C. The secondary crystallization process was monitored by differential scanning calorimetry and the glass transition of the remaining interllamelar amorphous phase was studied by Thermally Stimulated Depolarization Currents measurements. Non--isothermal window polarization is employed to resolve the relaxation in modes with a well--defined relaxation time that are subsequently adjusted to several standard models. Analysis of experimental results, show that cooperativity is reduced to a great extend in the interlamellar amorphous regions. The evolution of the modes on crystallization temperature reveals that large scale movements are progressively replaced by more localized ones, with higher frequency, as crystallization takes place at higher temperatures. As a consequence, the glass transition temperature of the amorphous interlamellar phase tends to lower values for higher annealing temperatures. Evolution of calorimetric scans of the glass transition are simulated from the obtained results and show the same behaviour. The interpretation of these results in terms of current views about secondary crystallization is discussed.Comment: 30 pages, 5 tables, 12 figures; figure 5 modifie

    Molecular Line Emission from Gravitationally Unstable Protoplanetary Disks

    Get PDF
    In the era of high resolution submillimeter interferometers, it will soon be possible to observe the neutral circumstellar medium directly involved in gas giant planet (GGP) formation at physical scales previously unattainable. In order to explore possible signatures of gas giant planet formation via disk instabilities, we have combined a 3D, non-local thermodynamic equilibrium (LTE) radiative transfer code with a 3D, finite differences hydrodynamical code to model molecular emission lines from the vicinity of a 1.4 M_J self-gravitating proto-GGP. Here, we explore the properties of rotational transitions of the commonly observed dense gas tracer, HCO+. Our main results are the following: 1. Very high lying HCO+ transitions (e.g. HCO+ J=7-6) can trace dense planet forming clumps around circumstellar disks. Depending on the molecular abundance, the proto-GGP may be directly imageable by the Atacama Large Millimeter Array (ALMA). 2. HCO+ emission lines are heavily self-absorbed through the proto-GGP's dense molecular core. This signature is nearly ubiquitous, and only weakly dependent on assumed HCO+ abundances. The self-absorption features are most pronounced at higher angular resolutions. Dense clumps that are not self-gravitating only show minor self-absorption features. 3. Line temperatures are highest through the proto-GGP at all assumed abundances and inclination angles. Conversely, due to self-absorption in the line, the velocity-integrated intensity may not be. High angular resolution interferometers such as the Submillimeter Array (SMA) and ALMA may be able to differentiate between competing theories of gas giant planet formation.Comment: 10 pages, 13 figures; Accepted by Ap

    Career Paths and Organizational Development: Expanding Alliances

    Get PDF
    Permission to include this article granted by NATCONThe Synergistic Model of Organizational Career Development is an attempt to combine best practice principles from two domains: organizational development and individual career planning. The model assumes three levels of intervention within an organization: philosophical, strategic, and practical. Interventions at any of the levels may be directed toward the employees, the organization, or the balancing and interactive process that bring the two systems together. At the philosophical level, employees are concerned with becoming or managing to stay meaningfully connected to the world of work, organizations are concerned with defining their central purpose as an organization, and balancing/interactive processes are designed to balance employees' and the organization's long-term needs and goals. At the strategic level, employees are concerned with enhancing their careers, organizations are concerned with best meeting their organizational outcomes, and balancing/interactive processes are designed to balance short-term employees and organization goals. At the practical level, employees are concerned with staying employable, organizations are concerned ensuring that employees perform tasks essential to the organization, and balancing/interactive processes are designed to balance organizational demands with employee performance. The ultimate goal of balancing/interactive interventions must be to bring individual career planning into alignment with effective organizational development strategies. (Contains 23 references) (MN

    A Description of Career Development within Canadian Organizations

    Get PDF
    Permission to include this article granted by the American Counseling AssociationThis study explored the scope and nature of career development services within organizations. One human resource/personnel department representative in each of the 30 largest organizations in Calgary, Alberta, Canada, was interviewed. The Career Development Questionnaire provided the framework for the structured interviews. Participants outlined their conceptualizations of organizational career development, described the outcomes organizations hoped to achieve through the use of career development services, listed the services provided by their organizations, and rated the effectiveness of each service. Although the descriptions and the intended outcomes for career development services were consistent, specific services were not aligned with specific goals. This finding highlighted the need for practitioners to ensure they align services with their goals and for researchers to evaluate the effects of career development services on the basis of their specific intentions. Overall, results suggest that career development within organizations is still practiced in a part-time and informal manner.Ye

    A Synergistic Model of Organizational Career Development

    Get PDF
    Permission to include this article granted by NATCONThe Synergistic Model of Organizational Career Development is a new model of organizational career development that combines the best of career development practice and organizational development into a unified, coherent model. The model has three levels of organization: philosophical, strategic, and practical. Expanding circles are used to illustrate movement from the broad philosophical vision to strategic plans and then to the practical need for acquisition and demonstration of specific competencies. The model encourages employees and organizations to dream (philosophical level), plan (strategic level), and perform (practical level). The personal and organizational vision circles are represented by the center rings to denote their role in regulating the other subsystems. The focus on competence is represented by the outer rings to denote their role in providing feedback to the rest of the system regarding the requirements of the world of work: the competencies that employees require to remain employable and organizations require to remain competitive. This feedback helps employees and organizations adjust to changes in the world of work and monitor their plans and strategies to ensure optimum fulfillment of their respective visions. The result is a synergistic reaction in which "the whole is greater than the sum of its parts." (28 references) (MN

    Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201

    Full text link
    We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically thick line profiles from high density tracers such as HCO+ J=1-0 show a red-shifted-absorption asymmetry reminiscent of inward motions. We construct a preliminary physical model of the circumstellar envelope (including radial density and temperature gradients, velocity field and turbulence) that reproduces the observed line profiles and estimates the ionization fraction. The presence of both mechanical and (non-ionizing) FUV-radiative input makes the region an interesting case to study triggered star formation

    Building Future Career Development Programs for Adolescents

    Get PDF
    Permission to include this article granted by NATCONHeuristically, adolescent career development programs may provide significant outcomes on personal, social, economic and national development levels. Unfortunately, however, very little research has been done on what is and what is not working within existing adolescent career development programs. Instead, adults continue to develop multiple resources that lack integration for adolescents, most notably, without the input from the students themselves (Hiebert et al., 2001). Unfortunately, the field appears to suffer from a lack of integration, wherein efficacy data on current programs is generally scarce and significant longitudinal data is absent. Creating a sense of integration, evaluating the results of current career development programs and creating longitudinal studies to gather objective data on the long- term impact of these programs appear to be critical missing ingredients. Without this research, we will never uncover the critical ingredients that are needed to support significant personal, social, economic and national development. Worse yet, the field may continue to go on to develop one product after another until it fragments so significantly that it fails to attract any further resources for development. In other words, the writers believe that too many resources are going into new products without any efficacy data to support them, currently or on a longitudinal basis, and that without some integration and objective support for their use, the field may fail to be financially supported in a future wherein financial resources are allocated upon the basis of results, not heuristic value

    LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths

    Full text link
    We present a new code for solving the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting emergent spectra. This code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of photons. Various physical models can be used as input, ranging from analytical descriptions over tabulated models to SPH simulations. To generate the Delaunay grid we sample the input model randomly, but weigh the sample probability with the molecular density and other parameters, and thereby we obtain an average grid point separation that scales with the local opacity. Our code does photon very efficiently so that the slow convergence of opaque models becomes traceable. When convergence between the level populations, the radiation field, and the point separation has been obtained, the grid is ray-traced to produced images that can readily be compared to observations. Because of the high dynamic range in scales that can be resolved using this type of grid, our code is particularly well suited for modeling of ALMA data. Our code can furthermore deal with overlapping lines of multiple molecular and atomic species.Comment: 13 pages, 12 figures, Accepted by A&A on 06/08/201
    • …
    corecore