65 research outputs found

    Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process

    Get PDF
    Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions

    Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells

    Get PDF
    The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species

    Expression of the basal cell adhesion molecule (B-CAM) in normal and diseased human skin

    No full text
    The basal cell adhesion molecule (B-CAM) is a 90-kD cell surface glycoprotein with a characteristic immunoglobulin domain structure. The pattern of B-CAM expression in cultured cells suggests that the molecule is associated with a substrate-adherent growth pattern in some lineages. We investigated the expression of B-CAM in normal and diseased human epidermis by means of immunohistochemistry employing a single batch of high-titer mouse monoclonal antibody G253. Snap-frozen biopsy material from normal skin (n = 8), psoriasis (n = 5), contact dermatitis (n = 6), basal cell carcinoma (n = 5) and fetal skin (n = 6) was studied. In normal human skin, B-CAM was found in varying degrees throughout the epidermis with a preference for suprabasal expression, hair follicles were regularly of a B-CAM-positive phenotype. There were no qualitative differences with regard to the B-CAM expression pattern in normal skin in comparison to psoriasis and contact dermatitis. In contrast, fetal skin (15th to 18th week of gestation) was characterized by B-CAM-positive cells in the basal layer of the epidermis as well as in the outer root sheath of hair follicles. Basal cell carcinomas also regularly expressed high levels of B-CAM. A strong B-CAM-positive phenotype can be found in the outer root sheath of hair follicles of adult and fetal human skin as well as in fetal basal keratinocytes

    Poster Presentations

    No full text
    • …
    corecore