15 research outputs found
Interleukin-15-Induced CD56(+) Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential
Contains fulltext :
108395.pdf (publisher's version ) (Open Access)Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-alpha. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols
Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial.
BACKGROUND AIMS: RNA-electroporated dendritic cell (DC)-based vaccines are rapidly gaining interest as therapeutic cancer vaccines. We report on a phase I dose-escalation trial using clinical-grade manufactured mature RNA-electroporated DC in acute myeloid leukemia (AML) patients. METHODS: CD14(+) cells were isolated from leukapheresis products by immunomagnetic CliniMACS separation and differentiated into mature DC (mDC). mDC were electroporated with clinical-grade mRNA encoding the Wilm's tumor (WT1) antigen, and tested for viability, phenotype, sterility and recovery. To test product safety, increasing doses of DC were administered intradermally four times at 2-week intervals in 10 AML patients. RESULTS: In a pre-clinical phase, immunomagnetic monocyte isolation proved superior over plastic adherence in terms of DC purity and lymphocyte contamination. We also validated a simplified DC maturation protocol yielding a consistent phenotype, migration and allogeneic T-cell stimulatory capacity in AML patients in remission. In the clinical trial, highly purified CD14(+) cells (94.5+/-3.4%) were obtained from all patients. A monocyte-to-mDC conversion factor of 25+/-10% was reached. All DC preparations exhibited high expression of mDC markers. Despite a decreased cell recovery of mDC after a combination of mRNA electroporation and cryopreservation, successful vaccine preparations were obtained in all AML patients. DC injections were well tolerated by all patients. CONCLUSIONS: Our method yields a standardized, simplified and reproducible preparation of multiple doses of clinical-grade mRNA-transfected DC vaccines from a single apheresis with consistent mature phenotype, recovery, sterility and viability. Intradermal injection of such DC vaccines in AML patients is safe
Monocyte-Derived Dendritic Cells with Silenced PD-1 Ligands and Transpresenting Interleukin-15 Stimulate Strong Tumor-Reactive T-cell Expansion
Contains fulltext :
177224.pdf (publisher's version ) (Closed access)Although allogeneic stem cell transplantation (allo-SCT) can elicit graft-versus-tumor (GVT) immunity, patients often relapse due to residual tumor cells. As essential orchestrators of the immune system, vaccination with dendritic cells (DC) is an appealing strategy to boost the GVT response. Nevertheless, durable clinical responses after DC vaccination are still limited, stressing the need to improve current DC vaccines. Aiming to empower DC potency, we engineered monocyte-derived DCs to deprive them of ligands for the immune checkpoint regulated by programmed death 1 (PD-1). We also equipped them with interleukin (IL)-15 "transpresentation" skills. Transfection with short interfering (si)RNA targeting the PD-1 ligands PD-L1 and PD-L2, in combination with IL15 and IL15Ralpha mRNA, preserved their mature DC profile and rendered the DCs superior in inducing T-cell proliferation and IFNgamma and TNFalpha production. Translated into an ex vivo hematological disease setting, DCs deprived of PD-1 ligands (PD-L), equipped with IL15/IL15Ralpha expression, or most effectively, both, induced superior expansion of minor histocompatibility antigen-specific CD8+ T cells from transplanted cancer patients. These data support the combinatorial approach of in situ suppression of the PD-L inhibitory checkpoints with DC-mediated IL15 transpresentation to promote antigen-specific T-cell responses and, ultimately, contribute to GVT immunity. Cancer Immunol Res; 5(8); 710-5. (c)2017 AACR
Engineering monocyte-derived dendritic cells to secrete interferon-alpha enhances their ability to promote adaptive and innate anti-tumor immune effector functions
Contains fulltext :
155181.pdf (publisher's version ) (Closed access)Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-alpha, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-alpha by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-alpha using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-alpha mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-alpha secretion. Altogether, our findings mark IFN-alpha mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients
Isotype-specific detection of ABO blood group antibodies using a novel flow cytometric method
Several methods to detect anti-A/B antibodies based on haemagglutination and haemolysis have been described. These methods measure predominantly anti-A/B immunoglobulin (Ig)M, whereas anti-A/B IgG and IgG subclasses are less well examined. We established a flow cytometry method (ABO-fluorescence-activated cell sorting; ABO-FACS) to quantify binding of anti-A/B IgM, IgG and IgG subclasses to human A or B red blood cells. Anti-A/B IgM were present in the majority of 120 blood donors, as expected from blood group typing. The sensitivity and specificity of anti-A/B IgM to predict the blood group was 93% and 96% respectively. Anti-A/B IgG was found in 34/38 blood group O samples (89%). Anti-B IgG in blood group A or anti-A IgG in blood group B was present in 4/28 (14%) and 1/28 (4%) samples, respectively, and absent in 26 AB sera. IgG2 was the predominant IgG subclass. The correlation of anti-A/B IgM and IgG in the ABO-FACS with haemagglutination titres was 0.870 and 0.783, respectively (n = 240; P < 0.001) whereas the comparison of ABO-FACS with ABO-enzyme-linked immunosorbent assay was less significant. In conclusion, ABO-FACS is a valid method to quantify anti-A/B IgM, IgG and IgG subclasses. It opens the possibility of isotype-specific monitoring of anti-A/B antibodies levels after ABO-incompatible solid organ and stem cell transplantation
Trial watch: Dendritic cell (DC)-based immunotherapy for cancer
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8(+)/CD4(+) T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications
Trial watch: Dendritic cell (DC)-based immunotherapy for cancer
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8(+)/CD4(+) T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications