653 research outputs found

    May we have some more land use change, please?

    Get PDF

    Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production - the cases of maize, rapeseed, Salix, soybean, sugarcane and wheat

    Get PDF
    Ecotoxicity impacts have seldom been included in Life Cycle Assessments of biofuels. This report demonstrates an approach to model the potential freshwater ecotoxicity impacts due to pesticide use, using the PestLCI and USEtox models. The method is applied to eight biofuel feedstock production cases: maize in the US (two cases), rapeseed and wheat in Germany, soybean (two cases) and sugarcane in Brazil, and Salix in Sweden. Potential freshwater ecotoxicity impacts vary by up to 3 orders of magnitude with Salix at the lower end and wheat and rapeseed at the higher end. Potential mitigation strategies include substitution to less toxic pesticides, and reduction of emissions to freshwater ecosystems, through improved management, e.g. the use of buffer zones

    Meeting Sustainability Requirements for SRC Bioenergy: Usefulness of Existing Tools, Responsibilities of Involved Stakeholders, and Recommendations for Further Developments

    Get PDF
    Short rotation coppice (SRC) is considered an important biomass supply option for meeting the European renewable energy targets. This paper presents an overview of existing and prospective sustainability requirements, Member State reporting obligations and parts of the methodology for calculating GHG emissions savings within the EU Renewable Energy Directive (RED), and shows how these RED-associated sustainability criteria may affect different stakeholders along SRC bioenergy supply chains. Existing and prospective tools are assessed on their usefulness in ensuring that SRC bioenergy is produced with sufficient consideration given to the RED-associated criteria. A sustainability framework is outlined that aims at (1) facilitating the development of SRC production systems that are attractive from the perspectives of all stakeholders, and (2) ensuring that the SRC production is RED eligible. Producer manuals, EIAs, and voluntary certification schemes can all be useful for ensuring RED eligibility. However, they are currently not sufficiently comprehensive, neither individually nor combined, and suggestions for how they can be more complementary are given. Geographical information systems offer opportunities for administrative authorities to provide stakeholders with maps or databases over areas/fields suitable for RED-eligible SRC cultivation. However, proper consideration of all relevant aspects requires that all stakeholders in the SRC supply chain become engaged in the development of SRC production systems and that a landscape perspective is used

    Attractive Systems for Bioenergy Feedstock Production in Sustainably Managed Landscapes– Contributions to the Call

    Get PDF
    Task 43 launched an initiative to identify attractive examples of landscape management and design for bioenergy and the bioeconomy. The aim of this initiative to catalogue and highlight world-wide examples of biomass production systems, throughout all stages of production, that can contribute positively to biodiversity and the generation of other ecosystem services. Information about biomass production systems and their impacts, as well as information about governance and policy initiatives that encourage adoptions of solutions leading to positive outcomes are welcomed. The goal of this initiative is to compile innovative examples as a means of showcasing how the production of biomass for bioenergy can generate positive impacts in agriculture and forestry landscapes. These examples are also meant to serve as sources of inspiration that other biomass producers can use to enhance the sustainability of their own activities.All contributions that are within scope and meet the set quality requirement are included in this Report. Selected contributions will be invited to submit a manuscript for a Special Collection in the peer review journal WIREs Energy and Environment, published by Wiley

    Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union

    Get PDF
    Bioenergy can contribute to achieving European Union (EU) climate targets while mitigating impacts from current agricultural land use. A GIS-based modeling framework (1000 m resolution) is employed to match biomass supply (forest and agricultural residues, complemented by lignocellulosic energy crops where needed) with biomass demand for either electricity or bio-oil production on sites currently used for coal power in the EU-28, Norway, and Switzerland. The framework matches supply and demand based on minimizing the field-to-gate costs and is used to provide geographically explicit information on (i) plant-gate supply cost; (ii) CO2 savings; and (iii) potential mitigation opportunities for soil erosion, flooding, and eutrophication resulting from the introduction of energy crops on cropland. Converting all suitable coal power plants to biomass and assuming that biomass is sourced within a transport distance of 300 km, would produce an estimated 150 TW h biomass-derived electricity, using 1365 PJ biomass, including biomass from energy crops grown on 6 Mha. Using all existing coal power sites for bio-oil production in 100-MW pyrolysis units could produce 820 PJ of bio-oil, using 1260 PJ biomass, including biomass from energy crops grown on 1.8 Mha. Using biomass to generate electricity would correspond to an emissions reduction of 135 MtCO2, while using biomass to produce bio-oil to substitute for crude oil would correspond to a reduction of 59 MtCO2. In addition, energy crops can have a positive effect on soil organic carbon in most of the analyzed countries. The mitigation opportunities investigated range from marginal to high depending on location

    Towards multifunctional landscapes coupling low carbon feed and bioenergy production with restorative agriculture: Economic deployment potential of grass-based biorefineries

    Get PDF
    Grass-based biomass from grasslands can be used as feedstock in green biorefineries (GBs) that produce a range of biobased products. In addition, adjustments made as part of crop rotation to increase areas under temporary grasslands can yield benefits such as carbon sequestration, increased soil productivity, reduced eutrophication and reduced need for pesticides. In this paper, a flexible modeling framework is developed to analyze the deployment options for GBs that use grass–clover to produce protein feed and feedstock for bioenergy. The focus is placed on optimal deployment, considering system configuration and operation, as well as land use changes designed to increase grass–clover cultivation on cropland. A case study involving 17 counties in Sweden showed that the deployment of GB systems could support biomethane and protein feed production corresponding to 5–60 and 13–154%, respectively, of biomethane and soybean feed imports to Sweden in 2020

    Producing Feedstock for Biofuels: Land-Use and Local Environmental Impacts

    Get PDF
    This report covers Chalmers responsibilities for subtask 1.3 - land-use patterns as well as parts of subtask 3.4 – data for other environmental impacts, in the EU Biofuel Baseline projec

    Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system

    Get PDF
    Abatement options for the hard-to-electrify parts of the transport sector are needed to achieve ambitious emissions targets. Biofuels based on biomass, electrofuels based on renewable hydrogen and a carbon source, as well as fossil fuels compensated by carbon dioxide removal (CDR) are the main options. Currently, biofuels are the only renewable fuels available at scale and are stimulated by blending mandates. Here, we estimate the system cost of enforcing such mandates in addition to an overall emissions cap for all energy sectors. We model overnight scenarios for 2040 and 2060 with the sector-coupled European energy system model PyPSA-Eur-Sec, with a high temporal resolution. The following cost drivers are identified: (i) high biomass costs due to scarcity, (ii) opportunity costs for competing usages of biomass for industry heat and combined heat and power (CHP) with carbon capture, and (iii) lower scalability and generally higher cost for biofuels compared to electrofuels and fossil fuels combined with CDR. With a -80% emissions reduction target in 2040, variable renewables, partial electrification of heat, industry and transport, and biomass use for CHP and industrial heat are important for achieving the target at minimal cost, while an abatement of remaining liquid fossil fuel use increases system cost. In this case, a 50% biofuel mandate increases total energy system costs by 123–191 billion €, corresponding to 35%–62% of the liquid fuel cost without a mandate. With a negative -105% emissions target in 2060, fuel abatement options are necessary, and electrofuels or the use of CDR to offset fossil fuel emissions are both more competitive than biofuels. In this case, a 50% biofuel mandate increases total costs by 21–33 billion €, or 11%–15% of the liquid fuel cost without a mandate. Biomass is preferred in CHP and industry heat, combined with carbon capture to serve negative emissions or electrofuel production, thereby utilising biogenic carbon several times. Sensitivity analyses reveal significant uncertainties but consistently support that higher biofuel mandates lead to higher costs

    Co-recycling of natural and synthetic carbon materials for a sustainable circular economy

    Get PDF
    Circular economy approaches are commonly depicted by two cycles, where the biological cycle is associated with regeneration in the biosphere and the technical cycle with reuse, refurbishment, and recycling to maintain value and maximize material recovery. This work, instead, presents an alternative vision to the management of carbonbased materials that integrates the two cycles and enables the phasing-out of fossil carbon from the material system. The aim is to investigate the benefits and global potential of a co-recycling system, as an alternative to conventional recycling systems that separate biomass-based materials (e.g., wood, paper) from fossil-based materials (e.g., plastics). Thermochemical recycling technologies enable the conversion of carbon-based waste materials into high-quality synthetic products, promoting circularity and avoiding carbon losses such as carbon emissions and waste accumulation in landfills and nature. Here, the construction and analysis of co-recycling scenarios show how the deployment of thermochemical recycling technologies can decouple the material system from fossil resource extraction. Furthermore, energy use is reduced if pyrolysis and/or gasification are included in the portfolio of recycling technologies. In a decarbonized energy system, deployment of co-recycling can lead to near-zero carbon emissions, while in more carbon-intensive energy systems the choice of thermochemical recycling route is key to limiting carbon emissions

    Mobilizing Sustainable Bioenergy Supply Chains

    Get PDF
    Analysis of the five globally significant supply chains conducted by IEA Bioenergy inter-Task teams – boreal and temperate forests, agricultural crop residues, biogas, lignocellulosic crops, and cultivated grasslands and pastures in Brazil – has confirmed that feedstocks produced using logistically efficient production systems can be mobilized to make significant contributions to achieving global targets for bioenergy. However, the very significant challenges identified in this report indicate that changes by all key members of society in public and private institutions and along the whole length of supply chains from feedstock production to energy product consumption are required to mobilize adequate feedstock resources to make a sustainable and significant contribution to climate change mitigation and provide the social and economic services possible. Notably, this report reveals that all globally significant bioenergy development has been underpinned by political backing, which is necessary for passing legislation in the form of mandates, renewable energy portfolios, carbon trading schemes, and the like. The mobilization potential identified in this report will depend on even greater policy support than achieved to date internationally.JRC.F.8-Sustainable Transpor
    • …
    corecore