440 research outputs found

    Unambiguous determination of spin dephasing times in ZnO

    Full text link
    Time-resolved magneto-optics is a well-established optical pump probe technique to generate and to probe spin coherence in semiconductors. By this method, spin dephasing times T_2^* can easily be determined if their values are comparable to the available pump-probe-delays. If T_2^* exceeds the laser repetition time, however, resonant spin amplification (RSA) can equally be used to extract T_2^*. We demonstrate that in ZnO these techniques have several tripping hazards resulting in deceptive values for T_2^* and show how to avoid them. We show that the temperature dependence of the amplitude ratio of two separate spin species can easily be misinterpreted as a strongly temperature dependent T_2^* of a single spin ensemble, while the two spin species have T_2^* values which are nearly independent of temperature. Additionally, consecutive pump pulses can significantly diminish the spin polarization, which remains from previous pump pulses. While this barely affects T_2^* values extracted from delay line scans, it results in seemingly shorter T_2^* values in RSA.Comment: 11 pages, 10 figure

    QCD Corrections to t anti-b H^- Associated Production in e^+ e^- Annihilation

    Full text link
    We calculate the QCD corrections to the cross section of e^+ e^- -> t anti-b H^- and its charge-conjugate counterpart within the minimal supersymmetric extension of the Standard Model. This process is particularly important if m_t b H^+ and e^+ e^- -> H^+ H^- are not allowed kinematically. Large logarithmic corrections that arise in the on-mass-shell scheme of quark mass renormalization, especially from the t anti-b H^- Yukawa coupling for large values of tan(beta), are resummed by adopting the modified minimal-subtraction scheme, so that the convergence behavior of the perturbative expansion is improved. The inclusion of the QCD corrections leads to a significant reduction of the theoretical uncertainties due to scheme and scale dependences.Comment: 21 pages (Latex), 8 figures (Postscript); detailed discussion of scheme and scale dependences adde

    Neutrophils promote venular thrombosis by shaping the rheological environment for platelet aggregation

    Get PDF
    In advanced inflammatory disease, microvascular thrombosis leads to the interruption of blood supply and provokes ischemic tissue injury. Recently, intravascularly adherent leukocytes have been reported to shape the blood flow in their immediate vascular environment. Whether these rheological effects are relevant for microvascular thrombogenesis remains elusive. Employing multi-channel in vivo microscopy, analyses in microfluidic devices, and computational modeling, we identified a previously unanticipated role of leukocytes for microvascular clot formation in inflamed tissue. For this purpose, neutrophils adhere at distinct sites in the microvasculature where these immune cells effectively promote thrombosis by shaping the rheological environment for platelet aggregation. In contrast to larger (lower-shear) vessels, this process in high-shear microvessels does not require fibrin generation or extracellular trap formation, but involves GPIb alpha-vWF and CD40-CD40L-dependent platelet interactions. Conversely, interference with these cellular interactions substantially compromises microvascular clotting. Thus, leukocytes shape the rheological environment in the inflamed venular microvasculature for platelet aggregation thereby effectively promoting the formation of blood clots. Targeting this specific crosstalk between the immune system and the hemostatic system might be instrumental for the prevention and treatment of microvascular thromboembolic pathologies, which are inaccessible to invasive revascularization strategies

    Report and preliminary results of SONNE cruise SO175, Miami - Bremerhaven, 12.11 - 30.12.2003 : (GAP, Gibraltar Arc Processes)

    Get PDF
    Expedition SO175 using FS Sonne aimed for a multidisciplinerary geoscientific approach with an international group of researchers. Methods covered the entire span from geophysical data acquisition (seafloor mapping, echography, seismic reflection), sediment coring at sites of active fluid venting, in situ heat flow measurements across the entire length of the Gibraltar thrust wedge, the deformation front, landslide bodies, and mud volcanoes, and finally the deployment of a long-term pore pressure probe. Video-supported operations helped to identify fluid vent sites, regions with tectonic activity, and other attractive high priority targets. Qualitative and quantitative examinations took place on board and are continued on land with respect to pore pressure variation, geomicrobiology, sediment- and fluid mobilization, geochemical processes, faunal assemblages (e.g. cold water corals), and gas hydrates (flammable methane-ice-crystals). Main focus of the expedition has been a better understanding of interaction between dynamic processes in a seismically active region region with slow plate convergence. In the context of earthquake nucleation and subduction zone processes, the SO175 research programme had a variety of goals, such as: ‱ To test the frictional behaviour of the abyssal plain sediments. ‱ To explore the temperature field of the 1755 thrust earthquake event via heat flow measurements. ‱ To assess the role of fluid venting and gas hydrate processes control slope stability and mud volcanic activity along the Iberian continental margin. ‱ To measure isotope geochemistry of pore waters and carbonates of deep fluids. ‱ To quantify microbial activity in Gibraltar wedge sediments. ‱ To test whether microseismicity in the area corresponds to in situ pore pressure changes. ‱ To find out if enhanced heat flow max be indicative of active subduction. Initial tentative results during the cruise suggest that there is a component of active thrusting at the base of the wedge, as attested by heat flow data. Based on mostly geochemical evidence, mud volcanism was found less active than previously assumed. Highlights from post-cruise research include the successful deployment of the long-term station and high frictional resistance of all incoming sediment on the three abyssal plains

    Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression

    Get PDF
    Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney diseas

    Gauge-Independent W-Boson Partial Decay Widths

    Full text link
    We calculate the partial decay widths of the W boson at one loop in the standard model using the on-shell renormalization scheme endowed with a gauge-independent definition of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. We work in RΟR_\xi gauge and explicitly verify that the final expressions are independent of the gauge parameters. Furthermore, we establish the relationship between the on-shell and MSˉ\bar{\mathrm{MS}} definitions of the CKM matrix, both in its generic form and in the Wolfenstein parameterization. As a by-product of our analysis, we recover the beta function of the CKM matrix.Comment: 15 pages; reference added; input parameters updated according to 2000 PDG report; accepted for publication in Phys. Rev.

    Evidence for Colour-Octet Mechanism from CERN LEP2 gamma gamma -> J/psi + X Data

    Full text link
    We present theoretical predictions for the transverse-momentum distribution of J/psi mesons promptly produced in gamma gamma collisions within the factorization formalism of nonrelativistic quantum chromodynamics, including the contributions from both direct and resolved photons, and we perform a conservative error analysis. The fraction of J/psi mesons from decays of bottom-flavoured hadrons is estimated to be negligibly small. New data taken by the DELPHI Collaboration at LEP2 nicely confirm these predictions, while they disfavour those obtained within the traditional colour-singlet model.Comment: 11 pages (Latex), 3 figures (Postscript); updated experimental data included, references added, accepted for publication in Phys. Rev. Let
    • 

    corecore