5 research outputs found
Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure
The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype
Electrophysiological Investigation of Microglia
International audienceAlthough microglial cells are not electrically excitable, they express a large repertoire of ion channels that are activated by voltage, stretch, extracellular ligands, or intracellular pathways (e.g. Ca2+, G-proteins). The patch-clamp technique is the electrophysiological method of choice to study these channels whose expression varies largely in pathological conditions but also during normal development and aging. This chapter focuses on protocols allowing the recording and the analysis of these channels in acute brain slices, with a particular emphasis on the study of channels activated by extracellular ligands