97 research outputs found

    Cyclooxygenase inhibition in ischemic brain injury

    Full text link
    Neuroinflammation is one of the key pathological events involved in the progression of brain damage caused by cerebral ischemia. Metabolism of arachidonic acid through cyclooxygenase (COX) enzymes is known to be actively involved in the neuroinflammatory events leading to neuronal death after ischemia. Two isoforms of COX, termed COX-1 and COX-2, have been identified. Unlike COX-1, COX-2 expression is dramatically induced by ischemia and appears to be an effector of tissue damage. This review article will focus specifically on the involvement of COX isozymes in brain ischemia. We will discuss issues related to the biochemistry and selective pharmacological inhibition of COX enzymes, and further refer to their expression in the brain under normal conditions and following excitotoxicity and ischemic cerebral injury. We will review present knowledge of the relative contribution of each COX isoform to the brain ischemic pathology, based on data from investigations utilizing selective COX-1/COX-2 inhibitors and genetic knockout mouse models. The mechanisms of neurotoxicity associated with increased COX activity after ischemia will also be examined. Finally, we will provide a critical evaluation of the therapeutic potential of COX inhibitors in cerebral ischemia and discuss new targets downstream of COX with potential neuroprotective ability

    The future of genetic testing for drug response

    Get PDF
    The effect of variation in genes coding for drug targets and for the enzymes involved in drug metabolism has highlighted the genetic component of drug response. Drug response can be likened to a complex, multifactorial genetic trait, and the study of its genetic variation, termed pharmacogenetics, is analogous to the study of complex genetic disease in terms of the questions posed and the analytical possibilities. Just as DNA variants are associated with specific disease predispositions, so will they be associated with individual response to certain drugs. The testing for drug response is following the same route as the genetic testing for inherited disorders, and has reached the stage where genome-wide analysis, as opposed to the analysis of single genes, is a reality. In this article, we will discuss some of the technical advances that facilitate such analyses, leading to faster and more extensive diagnostic capabilities

    Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat

    Get PDF
    Results from several studies indicate that cyclooxygenase-2 (COX-2) is involved ischemic brain injury. The purpose of this study was to evaluate the neuroprotective effects of the selective COX-2 inhibitor nimesulide on cerebral infarction and neurological deficits in a standardized model of transient focal cerebral ischemia in rats. Three doses of nimesulide (3, 6 and 12 mg/kg; i.p.) or vehicle were administered immediately after stroke and additional doses were given at 6, 12, 24, 36 and 48 h after ischemia. In other set of experiments, the effect of nimesulide was studied in a situation in which its first administration was delayed for 3 to 24 h after ischemia. Total, cortical and subcortical infarct volumes and functional outcome (assessed by neurological deficit score and rotarod performance) were determined 3 days after ischemia. The effect of nimesulide on prostaglandin E2 (PGE2) levels in the injured brain was also investigated. Nimesulide dose-dependently reduced infarct volume and improved functional recovery when compared to vehicle. Of interest is the finding that neuroprotection conferred by nimesulide (reduction of infarct size and neurological deficits and improvement of rotarod performance) was also observed when treatment was delayed until 24 h after ischemia. Further, administration of nimesulide in a delayed treatment paradigm completely abolished PGE2 accumulation in the postischemic brain, suggesting that COX-2 inhibition is a promising therapeutic strategy for cerebral ischemia to target the late-occurring inflammatory events which amplify initial damage

    Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum

    Get PDF
    Prostaglandin E2 (PGE2), is a major prostanoid produced by the activity of cyclooxygenases (COX) in response to various physiological and pathological stimuli. PGE2 exerts its effects by activating four specific E-type prostanoid receptors (EP1, EP2, EP3 and EP4). In the present study, we analyzed the expression of the PGE2 receptor EP1 (mRNA and protein) in different regions of the adult rat brain (hippocampus, hypothalamus, striatum, prefrontal cerebral cortex, parietal cortex, brain stem and cerebellum) using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and immunohistochemical methods. On a regional basis, levels of EP1 mRNA were the highest in parietal cortex and cerebellum. At the protein level, we found a very strong expression of EP1 in cerebellum as revealed by Western blotting experiments. Furthermore, the present study provides for the first time evidence that the EP1 receptor is highly expressed in the cerebellum, where the Purkinje cells displayed a very high immunolabeling of their perikaryon and dendrites as observed in the immunohistochemical analysis. Results from the present study indicate that the EP1 prostanoid receptor is expressed in specific neuronal populations, which possibly determine the region specific response to PGE2

    Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.

    Get PDF
    Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment

    Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway

    Get PDF
    (A-C). Effects of RBE on the phosphorylation of p38MAPK, ERK, and JNK in non-activated microglia. Cells were treated with RBE (50–300 μg/ml) for 24 h followed by cell lyses and protein estimation. During stimulation, one of the wells in 6-well plate was incubated with LPS (10 ng/ml) for 30 min to be used as positive control to validate the functionality of antibodies against activated state of kinases. Whole cell lysates were subjected to western blots analyses. Representative blots (upper panel) and densitometry analyses (lower panel) are shown: A) p38 MAPK, B) pERK, and C) pJNK. Statistical analyses were carried out by using one-way ANOVA with post hoc Student-Newman-Keuls test (multiple comparisons). Results are expressed as means ± SEM of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 compared control cells. (TIF 963 kb

    Targeting oxidative stress: Novel coumarin-based inverse agonists of GPR55

    Get PDF
    Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases

    Cyclooxygenase Inhibition Limits Blood-Brain Barrier Disruption following Intracerebral Injection of Tumor Necrosis Factor-alpha in the Rat

    Get PDF
    Increased permeability of the blood-brain barrier (BBB) is important in neurological disorders. Neuroinflammation is associated with increased BBB breakdown and brain injury. Tumor necrosis factor-alpha (TNF-a) is involved in BBB injury and edema formation through a mechanism involving matrix metalloproteinase (MMP) upregulation. There is emerging evidence indicating that cyclooxygenase (COX) inhibition limits BBB disruption following ischemic stroke and bacterial meningitis, but the mechanisms involved are not known. We used intracerebral injection of TNF-a to study the effect of COX inhibition on TNF-a-induced BBB breakdown, MMP expression/activity and oxidative stress. BBB disruption was evaluated by the uptake of 14C-sucrose into the brain and by magnetic resonance imaging (MRI) utilizing Gd-DTPA as a paramagnetic contrast agent. Using selective inhibitors of each COX isoform, we found that COX-1 activity is more important than COX-2 in BBB opening. TNF-a induced a significant upregulation of gelatinase B (MMP-9), stromelysin-1 (MMP-3) and COX-2. In addition, TNF-a significantly depleted glutathione as compared to saline. Indomethacin (10 mg/kg; i.p.), an inhibitor of COX-1 and COX-2, reduced BBB damage at 24 h. Indomethacin significantly attenuated MMP-9 and MMP-3 expression and activation, and prevented the loss of endogenous radical scavenging capacity following intracerebral injection of TNF-a. Our results show for the first time that BBB disruption during neuroinflammation can be significantly reduced by administration of COX inhibitors. Modulation of COX in brain injury by COX inhibitors or agents modulating prostaglandin E2 formation/signaling may be useful in clinical settings associated with BBB disruption

    Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling

    Get PDF
    Thymoquinone is an antioxidant phytochemical that has been shown to inhibit neuroinflammation. However, little is known about the potential roles of intracellular antioxidant signalling pathways in its anti-inflammatory activity. The objective of this study was to elucidate the roles played by activation of the Nrf2/ARE antioxidant mechanisms in the anti-inflammatory activity of this compound. Thymoquinone inhibited lipopolysaccharide (LPS)-induced neuroinflammation through interference with NF-B signalling in BV2 microglia. Thymoquinone also activated Nrf2/ARE signalling by increasing nuclear localisation, DNA binding and transcriptional activity of Nrf2, as well as increasing protein levels of HO-1 and NQO1. Suppression of Nrf2 activity through siRNA or with the use of trigonelline resulted in the loss of anti-inflammatory activity by thymoquinone. Taken together, our studies show that thymoquinone inhibits NF-kappaB-dependent neuroinflammation in BV2 microglia, by targeting antioxidant pathway involving activation of both Nrf2/ARE. We propose that activation of Nrf2/ARE signalling pathway by thymoquinone probably results in inhibition of NF-kappaB-mediated neuroinflammation

    Neuroprotective Effect of AM404 Against NMDA-Induced Hippocampal Excitotoxicity

    Get PDF
    Different studies have demonstrated that inflammation and alterations in glutamate neurotransmission are two events contributing to the pathophysiology of neurodegenerative or neurological disorders. There are evidences that N-arachidonoylphenolamine (AM404), a cannabinoid system modulator and paracetamol metabolite, modulates inflammation and exerts neuroprotective effects on Huntington's (HD) and Parkinson's diseases (PD), and ischemia. However, the effects of AM404 on the production of inflammatory mediators and excitotoxicity in brain tissue stimulated with N-methyl-D-aspartic acid (NMDA) are not elucidated. In this present study, we investigated the effects of AM404 on the production of inflammatory mediators and neuronal cell death induced by NMDA in organotypic hippocampal slices cultures (OHSC) using qPCR, western blot (WB), and immunohistochemistry. Moreover, to comprehend the mechanism of excitotoxicity, we evaluated the effects of AM404 on glutamate release in hippocampal synaptosomes and the NMDA-induced calcium responses in acute hippocampal slices. Our results showed that AM404 led to a significant decrease in cell death induced by NMDA, through a mechanism possibly involving the reduction of glutamate release and the calcium ions responses. Furthermore, it decreased the expression of the interleukin (IL)-1\u3b2. This study provides new significant insights about the anti-inflammatory and neuroprotection effects of AM404 on NMDA-induced excitotoxicity. To understand the effects of AM404 in these processes might contribute to the therapeutic potential of AM404 in diseases with involvement of neuroinflammation and neurodegeneration and might lead to a possible future treatment of neurodegenerative diseases
    • …
    corecore