57 research outputs found

    Teams Make You Smarter: Learning and Knowledge Transfer in Auctions and Markets by Teams and Individuals

    Get PDF
    We study the impact of team decision making on market behavior and its consequences for subsequent individual performance in the Wason selection task, the single-most studied reasoning task. We reformulated the task in terms of "assets" in a market context. Teams of traders learn the task’s solution faster than individuals and achieve this with weaker, less specific, performance feedback. Some teams even perform better than the best individuals. The experience of team decision-making in the market also creates positive knowledge spillovers for post-market individual performance in solving new Wason tasks, implying that team experiences enhance individual problem-solving skills.team decisions, markets, auctions, Wason selection task, rationality

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1μT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×105ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    Safety testing of veterinary vaccines using magnetic resonance imaging in pigs

    Get PDF
    Safety testing of veterinary vaccines requires the use of a large number of animals to investigate possible local and systemic reactions. This includes, among others, the pathological examination of the injection site in frequent intervals. This examination requires a selected killing of animals in frequent intervals. To reduce the number of animals needed for this kind of safety testing, magnetic resonance imaging (MRI) was used to detect and quantify possible local reactions after vaccination in vivo. Sixty-four pigs were divided into four experimental groups (n = 16);two groups consisting of 12-week-old pigs and two of 6-month-old pigs at vaccination day. The pigs were vaccinated with four licensed products (each group receiving one vaccine) and examined up to 6 times using MRI during a period of 5 weeks. The MR images were evaluated semi-automatically, comparing the volumes of altered signal intensities on the vaccination side (VS) with the volumes of the signal intensities on the control side (CS). A paired t-test was used to identify significant differences (p < 0.05) between VS and CS. The results show that MRI allows a 3D-quantification of the extent of local reactions in vivo by scanning the same live animals at several time points after vaccination. MRI is a suitable alternative method for non-invasive safety testing of injectable medicines and can therefore be applied to reduce animal numbers used for safety testing purposes

    Assessment of Local Reaction to Vaccines in Live Piglets with Magnetic Resonance Imaging Compared to Histopathology

    Get PDF
    The safety of veterinary vaccines is assessed in clinical trials in Europe. The assessment of the local tissue reaction to vaccination by magnetic resonance imaging (MRI) could reduce the number of animals needed because repeated examinations can be performed in the same animal over time. The present study compared the evaluation of local tissue reactions to vaccination using MRI in live pigs with histopathology of porcine tissue, the current gold standard in regulatory safety testing. Eight piglets each were administered one of two commercial vaccines into marked injection sites. All animals were sedated and scanned repeatedly by MRI using a contrast agent up to day 29 after vaccination. On day 29, the animals were euthanized and underwent a pathological examination. The MRI results were compared with the pathomorphological findings at the injection site by regression analysis. The MR images and the pathological examinations yielded matching results concerning the sizes of the affected tissue volumes or areas. The use of MRI for regulatory safety testing can reduce the number of animals needed to 8 per examination group. The volume of a local reaction and its progression over time can be evaluated and documented. If persistent lesions develop a final pathomorphological examination is needed to identify the kind and local distribution of the reaction

    Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]

    Get PDF
    Crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding

    Teams Make You Smarter: Learning and Knowledge Transfer in Auctions and Markets by Teams and Individuals

    No full text
    We study the impact of team decision making on market behavior and its consequences for subsequent individual performance in the Wason selection task, the single-most studied reasoning task. We reformulated the task in terms of assets in a market context. Teams of traders learn the task's solution faster than individuals and achieve this with weaker, less specific, performance feedback. Some teams even perform better than the best individuals. The experience of team decision-making in the market also creates positive knowledge spillovers for post-market individual performance in solving new Wason tasks, implying that team experiences enhance individual problem-solving skills

    Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs

    Get PDF
    Background: Since the pig is one of the most important livestock animals worldwide, mapping loci that are associated with economically important traits and/or traits that influence animal welfare is extremely relevant for efficient future pig breeding. Therefore, the purpose of this study was a genome-wide mapping of quantitative trait loci (QTL) associated with nine body composition and bone mineral traits: absolute (Fat, Lean) and percentage (FatPC, LeanPC) fat and lean mass, live weight (Weight), soft tissue X-ray attenuation coefficient (R), absolute (BMC) and percentage (BMCPC) bone mineral content and bone mineral density (BMD). Methods: Data on the nine traits investigated were obtained by Dual-energy X-ray absorptiometry for 551 pigs that were between 160 and 200 days old. In addition, all pigs were genotyped using Illumina's PorcineSNP60 Genotyping BeadChip. Based on these data, a genome-wide combined linkage and linkage disequilibrium analysis was conducted. Thus, we used 44 611 sliding windows that each consisted of 20 adjacent single nucleotide polymorphisms (SNPs). For the middle of each sliding window a variance component analysis was carried out using ASReml. The underlying mixed linear model included random QTL and polygenic effects, with fixed effects of sex, housing, season and age. Results: Using a Bonferroni-corrected genome-wide significance threshold of P < 0.001, significant peaks were identified for all traits except BMCPC. Overall, we identified 72 QTL on 16 chromosomes, of which 24 were significantly associated with one trait only and the remaining with more than one trait. For example, a QTL on chromosome 2 included the highest peak across the genome for four traits (Fat, FatPC, LeanPC and R). The nearby gene, ZNF608, is known to be associated with body mass index in humans and involved in starvation in Drosophila, which makes it an extremely good candidate gene for this QTL. Conclusions: Our QTL mapping approach identified 72 QTL, some of which confirmed results of previous studies in pigs. However, we also detected significant associations that have not been published before and were able to identify a number of new and promising candidate genes, such as ZNF608

    Teams Make You Smarter: How Exposure to Teams Improves Individual Decisions in Probability and Reasoning Tasks

    No full text
    Many important decisions are routinely made by transient and temporary teams, which perform their duty and disperse. Team members often continue making similar decisions as individuals. We study how the experience of team decision-making affects subsequent individual decisions in two seminal probability and reasoning tasks, the Monty Hall problem and the Wason selection task. Both tasks are hard and involve a general rule, thus allowing for knowledge transfers, and can be embedded in the context of markets that offer identical incentives to teams and individuals. Our results show that teams trade closer to the rational level, learn the solution faster, and achieve this with weaker, less specific, performance feedback than individuals. Most importantly, we observe significant knowledge transfers from team decision-making to subsequent individual performances that take place up to five weeks later, indicating that exposure to team decision-making has strong positive spillovers on the quality of individual decisions
    corecore