1,617 research outputs found

    A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy Time is brain?

    Get PDF
    Objective: It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. Methods: We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. Results: We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n 5 979 patients) yielded a pooled effect size of r 5 20.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] 20.51 to 20.32; p , 0.0001; I 2 5 65.22%) and r 5 20.35 related to seizure frequency (95% CI 20.47 to 20.22; p , 0.0001; I 2 5 61.97%). Sensitivity analyses did not change the results. Narrative synthesis of 25/3 crosssectional/longitudinal studies on whole brain atrophy (n 5 1,504 patients) indicated that .80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. Conclusions: While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression

    Grids of stellar models. VIII. From 0.4 to 1.0 Msun at Z=0.020 and Z=0.001, with the MHD equation of state

    Full text link
    We present stellar evolutionary models covering the mass range from 0.4 to 1 Msun calculated for metallicities Z=0.020 and 0.001 with the MHD equation of state (Hummer & Mihalas, 1988; Mihalas et al. 1988; D\"appen et al. 1988). A parallel calculation using the OPAL (Rogers et al. 1996) equation of state has been made to demonstrate the adequacy of the MHD equation of state in the range of 1.0 to 0.8 Msun (the lower end of the OPAL tables). Below, down to 0.4 Msun, we have justified the use of the MHD equation of state by theoretical arguments and the findings of Chabrier & Baraffe (1997). We use the radiative opacities by Iglesias & Rogers (1996), completed with the atomic and molecular opacities by Alexander & Fergusson (1994). We follow the evolution from the Hayashi fully convective configuration up to the red giant tip for the most massive stars, and up to an age of 20 Gyr for the less massive ones. We compare our solar-metallicity models with recent models computed by other groups and with observations. The present stellar models complete the set of grids computed with the same up-to-date input physics by the Geneva group [Z=0.020 and 0.001, Schaller et al. (1992), Bernasconi (1996), and Charbonnel et al. (1996); Z=0.008, Schaerer et al. (1992); Z=0.004, Charbonnel et al. (1993); Z=0.040, Schaerer et al. (1993); Z=0.10, Mowlavi et al. (1998); enhanced mass loss rate evolutionary tracks, Meynet et al. (1994)].Comment: Accepted for publication in A&A Supplement Serie

    On the correlation between Ca and Halpha solar emission and consequences for stellar activity observations

    Full text link
    The correlation between Ca and Halpha chromospheric emission, known to be positive in the solar case, has been found to vary between -1 and 1 for other stars. Our objective is to understand the factors influencing this correlation in the solar case, and then to extrapolate our interpretation to other stars. We characterize the correlation between both types of emission in the solar case for different time scales. Then we determine the filling factors due to plages and filaments, and reconstruct the Ca and Halpha emission to test different physical conditions in terms of plage and filament contrasts. We have been able to precisely determine the correlation in the solar case as a function of the cycle phase. We interpret the results as reflecting the balance between the emission in plages and the absorption in filaments. We found that correlations close to zero or slightly negative can be obtained when considering the same spatio-temporal distribution of plages and filaments than on the sun but with greater contrast. However, with that assumption, correlations close to -1 cannot be obtained for example. Stars with a very low Halpha contrast in plages and filaments well correlated with plages could produce a correlation close to -1. This study opens new ways to study stellar activity, and provides a new diagnosis that will ultimately help to understand the magnetic configuration of stars other than the sun.Comment: 10 pages, 13 figures, accepted in Astronomy and Astrophysic

    Automatic detection of limb prominences in 304 A EUV images

    Get PDF
    A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community

    Constraining forest certificate's market to improve cost-effectiveness of biodiversity conservation in Sao Paulo state, Brazil

    Get PDF
    The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the "forest certificates" market, and compared their cost-effectiveness with that of existing command-and-control (C&C), i.e. compliance to the Legal Reserve on own property, in the state of Sao Paulo. The simulations showed a clear potential of the constrained "forest certificates" market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95%) compared with a "free trade" scenario constrained only by biome, this option was still 50% less costly than the Baseline scenario of compliance with Legal Reserve at the property.The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this1110118sem informaçãosem informaçã

    Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density

    Get PDF
    Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics. / Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured. / Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF. / Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study

    Histological and MRI markers of white matter damage in focal epilepsy

    Get PDF
    Growing evidence highlights the importance of white matter in the pathogenesis of focal epilepsy. Ex vivo and post-mortem studies show pathological changes in epileptic patients in white matter myelination, axonal integrity, and cellular composition. Diffusion-weighted MRI and its analytical extensions, particularly diffusion tensor imaging (DTI), have been the most widely used technique to image the white matter in vivo for the last two decades, and have shown microstructural alterations in multiple tracts both in the vicinity and at distance from the epileptogenic focus. These techniques have also shown promising ability to predict cognitive status and response to pharmacological or surgical treatments. More recently, the hypothesis that focal epilepsy may be more adequately described as a system-level disorder has motivated a shift towards the study of macroscale brain connectivity. This review will cover emerging findings contributing to our understanding of white matter alterations in focal epilepsy, studied by means of histological and ultrastructural analyses, diffusion MRI, and large-scale network analysis. Focus is put on temporal lobe epilepsy and focal cortical dysplasia. This topic was addressed in a special interest group on neuroimaging at the 70th annual meeting of the American Epilepsy Society, held in Houston December 2-6, 2016
    corecore