6,254 research outputs found

    A Stochastic Broadcast Pi-Calculus

    Get PDF
    In this paper we propose a stochastic broadcast PI-calculus which can be used to model server-client based systems where synchronization is always governed by only one participant. Therefore, there is no need to determine the joint synchronization rates. We also take immediate transitions into account which is useful to model behaviors with no impact on the temporal properties of a system. Since immediate transitions may introduce non-determinism, we will show how these non-determinism can be resolved, and as result a valid CTMC will be obtained finally. Also some practical examples are given to show the application of this calculus.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification

    Get PDF
    Classification techniques are becoming essential in the financial world for reducing risks and possible disasters. Managers are interested in not only high accuracy, but in interpretability and transparency as well. It is widely accepted now that the comprehension of how inputs and outputs are related to each other is crucial for taking operative and strategic decisions. Furthermore, inputs are often affected by contextual factors and characterized by a high level of uncertainty. In addition, financial data are usually highly skewed toward the majority class. With the aim of achieving high accuracies, preserving the interpretability, and managing uncertain and unbalanced data, this paper presents a novel method to deal with financial data classification by adopting type-2 fuzzy rule-based classifiers (FRBCs) generated from data by a multiobjective evolutionary algorithm (MOEA). The classifiers employ an approach, denoted as scaled dominance, for defining rule weights in such a way to help minority classes to be correctly classified. In particular, we have extended PAES-RCS, an MOEA-based approach to learn concurrently the rule and data bases of FRBCs, for managing both interval type-2 fuzzy sets and unbalanced datasets. To the best of our knowledge, this is the first work that generates type-2 FRBCs by concurrently maximizing accuracy and minimizing the number of rules and the rule length with the objective of producing interpretable models of real-world skewed and incomplete financial datasets. The rule bases are generated by exploiting a rule and condition selection (RCS) approach, which selects a reduced number of rules from a heuristically generated rule base and a reduced number of conditions for each selected rule during the evolutionary process. The weight associated with each rule is scaled by the scaled dominance approach on the fuzzy frequency of the output class, in order to give a higher weight to the minority class. As regards the data base learning, the membership function parameters of the interval type-2 fuzzy sets used in the rules are learned concurrently to the application of RCS. Unbalanced datasets are managed by using, in addition to complexity, selectivity and specificity as objectives of the MOEA rather than only the classification rate. We tested our approach, named IT2-PAES-RCS, on 11 financial datasets and compared our results with the ones obtained by the original PAES-RCS with three objectives and with and without scaled dominance, the FRBCs, fuzzy association rule-based classification model for high-dimensional dataset (FARC-HD) and fuzzy unordered rules induction algorithm (FURIA), the classical C4.5 decision tree algorithm, and its cost-sensitive version. Using nonparametric statistical tests, we will show that IT2-PAES-RCS generates FRBCs with, on average, accuracy statistically comparable with and complexity lower than the ones generated by the two versions of the original PAES-RCS. Further, the FRBCs generated by FARC-HD and FURIA and the decision trees computed by C4.5 and its cost-sensitive version, despite the highest complexity, result to be less accurate than the FRBCs generated by IT2-PAES-RCS. Finally, we will highlight how these FRBCs are easily interpretable by showing and discussing one of them

    Leadership emergence in walking groups

    Full text link
    Understanding the mechanisms underlying the emergence of leadership in multi-agent systems is still under investigation in many areas of research where group coordination is involved. While leadership has been mostly investigated in the case of animal groups, only a few works address the problem of leadership emergence in human ensembles, e.g. pedestrian walking, group dance. In this paper we study the emergence of leadership in the specific scenario of a small walking group. Our aim is to unveil the main mechanisms emerging in a human group when leader or follower roles are not designated a priori. Two groups of participants were asked to walk together and turn or change speed at self-selected times. Data were analysed using time-dependent cross correlation to infer leader-follower interactions between each pair of group members. The results indicate that leadership emergence is due both to contextual factors, such as an individual's position in the group, and to personal factors, such as an individual's characteristic locomotor behaviour. Our approach can easily be extended to larger groups and other scenarios such as team sports and emergency evacuations

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Towards a compact representation of temporal rasters

    Get PDF
    Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal k^2 raster. It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 690941. Published in SPIRE 201

    Direct carrier–envelope phase stabilization of a soliton-effect compressed sub-two-cycle pulse source through nonlinear mixing of solitonic and dispersive waves

    Get PDF
    We present a carrier–envelope phase (CEP) stabilized sub-two-cycle 5.2 fs pulse source based on soliton-effect self-compression of femtosecond laser pulses in millimetre-long highly nonlinear photonic crystal fibres. We employ a simple and efficient scheme to generate a strong (40–60 dB, configuration dependent) CEP beat signal directly from the pulse source via f-to-2f interferometry where the second harmonic of the main soliton pulse is mixed with the isolated dispersive blue/green radiation peak that is also generated in the compression process, obviating the need for additional spectral broadening mechanisms.Fundação para a Ciência e a Tecnologia (Portugal)Fonds Europeen de Developpement Economique et Regional (Grant PTDC/FIS/115102/2009
    • 

    corecore