5,428 research outputs found

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure

    Influence of second-order corrections to the energy-dependence of neutrino flavor conversion formulae

    Full text link
    We discuss the {\em intermediate} wave-packet formalism for analytically quantifying the energy dependence of the two-flavor conversion formula that is usually considered for analyzing neutrino oscillations and adjusting the focusing horn, target position and/or detector location of some flavor conversion experiments. Following a sequence of analytical approximations where we consider the second-order corrections in a power series expansion of the energy, we point out a {\em residual} time-dependent phase which, in addition to some well known wave-packet effects, can subtly modify the oscillation parameters and limits. In the present precision era of neutrino oscillation experiments where higher precision measurements are required, we quantify some small corrections in neutrino flavor conversion formulae which lead to a modified energy-dependence for νμ↔νe\nu_{\mu}\leftrightarrow\nu_{e} oscillations.Comment: 13 pages, 3 figure

    Theoretical correlation between possible evidences of neutrino chiral oscillations and polarization measurements

    Full text link
    Reporting about the formalism with the Dirac equation we describe the dynamics of chiral oscillations for a fermionic particle non-minimally coupling with an external magnetic field. For massive particles, the chirality and helicity quantum numbers represent different physical quantities of representative importance in the study of chiral interactions, in particular, in the context of neutrino physics. After solving the interacting Hamiltonian (Dirac) equation for the corresponding {\em fermionic} Dirac-{\em type} particle (neutrino) and quantifying chiral oscillations in the Dirac wave packet framework, we avail the possibility of determining realistic neutrino chirality conversion rates by means of (helicity) polarization measurements. We notice that it can become feasible for some particular magnetic field configurations with large values of {\boldmathBB} orthogonal to the direction of the propagating particle.Comment: 12 pages, 2 figure

    Dirac neutrino mass from the beta decay end-point modified by the dynamics of a Lorentz-violating equation of motion

    Full text link
    Using a generalized procedure for obtaining the equation of motion of a propagating fermionic particle, we examine previous claims for a lightlike preferred axis embedded in the framework of Lorentz-invariance violation with preserved algebra. In a high energy scale, the corresponding equation of motion is reduced to a conserving lepton number chiral (VSR) equation, and in a low energy scale, the Dirac equation for a free is recovered. The new dynamics introduces some novel ingredients (modified cross section) to the phenomenology of the tritium beta decay end-point.Comment: 11 pages, 4 figure

    Limitations on the principle of stationary phase when it is applied to tunneling analysis

    Get PDF
    Using a recently developed procedure - multiple wave packet decomposition - here we study the phase time formulation for tunneling/reflecting particles colliding with a potential barrier. To partially overcome the analytical difficulties which frequently arise when the stationary phase method is employed for deriving phase (tunneling) time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and an one-dimensional rectangular potential barrier. Summing the amplitudes of the reflected and transmitted waves - using a method we call multiple peak decomposition - is shown to allow reconstruction of the scattered wave packets in a way which allows the stationary phase principle to be recovered.Comment: 17 pages, 2 figure

    Additional time-dependent phase in the flavor-conversion formulas

    Get PDF
    In the framework of intermediate wave-packets for treating flavor oscillations, we quantify the modifications which appear when we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy. By following a sequence of analytic approximations, we point out that an extra time-dependent phase is merely the residue of second-order corrections. Such phase effects are usually ignored in the relativistic wave-packet treatment, but they do not vanish non-relativistically and can introduce some small modifications to the oscillation pattern even in the ultra-relativistic limit.Comment: 9 pages, 3 figure

    The construction of Dirac wave packets for a fermionic particle non-minimally coupling with an external magnetic field

    Get PDF
    We shall proceed with the construction of normalizable Dirac wave packets for {\em fermionic} particles (neutrinos) with dynamics governed by a ``modified'' Dirac equation with a non-minimal coupling with an external magnetic field. We are not only interested on the analytic solutions of the ``modified'' Dirac wave equation but also on the construction of Dirac wave packets which can be used for describing the dynamics of some observable physical quantities which are relevant in the context of the quantum oscillation phenomena. To conclude, we discuss qualitatively the applicability of this formal construction in the treatment of chiral (and flavor) oscillations in the theoretical context of neutrino physics.Comment: 10 page

    First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory

    Get PDF
    A number of diverse bulk properties of the zincblende and wurtzite III-V nitrides AlN, GaN, and InN, are predicted from first principles within density functional theory using the plane-wave ultrasoft pseudopotential method, within both the LDA (local density) and GGA (generalized gradient) approximations to the exchange-correlation functional. Besides structure and cohesion, we study formation enthalpies (a key ingredient in predicting defect solubilities and surface stability), spontaneous polarizations and piezoelectric constants (central parameters for nanostructure modeling), and elastic constants. Our study bears out the relative merits of the two density functional approaches in describing diverse properties of the III-V nitrides (and of the parent species N2_2, Al, Ga, and In), and leads us to conclude that the GGA approximation, associated with high-accuracy techniques such as multiprojector ultrasoft pseudopotentials or modern all-electron methods, is to be preferred in the study of III-V nitrides.Comment: RevTeX 6 pages, 12 tables, 0 figure

    Effects of macroscopic polarization in III-V nitride multi-quantum-wells

    Full text link
    Huge built-in electric fields have been predicted to exist in wurtzite III-V nitrides thin films and multilayers. Such fields originate from heterointerface discontinuities of the macroscopic bulk polarization of the nitrides. Here we discuss the background theory, the role of spontaneous polarization in this context, and the practical implications of built-in polarization fields in nitride nanostructures. To support our arguments, we present detailed self-consistent tight-binding simulations of typical nitride QW structures in which polarization effects are dominant.Comment: 11 pages, 9 figures, uses revtex/epsf. submitted to PR

    Electronic dielectric constants of insulators by the polarization method

    Full text link
    We discuss a non-perturbative, technically straightforward, easy-to-use, and computationally affordable method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating solids at the first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF, PbTiO3_3, and CaTiO3_3. The predicted \einf's agree well with those given by Density Functional Perturbation Theory (the reference theoretical treatment), and they are generally within less than 10 % of experiment.Comment: RevTeX 4 pages, 2 ps figure
    • …
    corecore