341 research outputs found

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Measuring device Patent

    Get PDF
    Expulsion and measuring device for determining quantity of liquid in tank under conditions of weightlessnes

    THERMAL CONDUCTIVITY FOR A NOISY DISORDERED HARMONIC CHAIN

    Get PDF
    We consider a dd-dimensional disordered harmonic chain (DHC) perturbed by an energy conservative noise. We obtain uniform in the volume upper and lower bounds for the thermal conductivity defined through the Green-Kubo formula. These bounds indicate a positive finite conductivity. We prove also that the infinite volume homogenized Green-Kubo formula converges

    From normal diffusion to superdiffusion of energy in the evanescent flip noise limit

    Get PDF
    Published online: 18 March 2015We consider a harmonic chain perturbed by an energy conserving noise depending on a parameter Îł\gamma. When Îł\gamma is of order one, the energy diffuses according to the standard heat equation after a space-time diffusive scaling. On the other hand, when Îł=0\gamma=0, the energy superdiffuses according to a 3/43/4 fractional heat equation after a subdiffusive space-time scaling. In this paper, we study the existence of a crossover between these two regimes as a function of Îł\gamma

    Asymptotics of the solutions of the stochastic lattice wave equation

    Full text link
    We consider the long time limit theorems for the solutions of a discrete wave equation with a weak stochastic forcing. The multiplicative noise conserves the energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds both for square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sense in the former case, and in the weak sense in the latter. On the other hand, the weak limit for square integrable initial data is deterministic

    Harmonic Systems With Bulk Noises

    Get PDF
    We consider a harmonic chain in contact with thermal reservoirs at different temperatures and subject to bulk noises of different types: velocity flips or self-consistent reservoirs. While both systems have the same covariances in the nonequilibrium stationary state (NESS) the measures are very different. We study hydrodynamical scaling, large deviations, fluctuations, and long range correlations in both systems. Some of our results extend to higher dimensions

    Superdiffusion of energy in Hamiltonian systems perturbed by a conservative noise

    Get PDF
    We review some recent results on the anomalous diffusion of energy in systems of 1D coupled oscillators and we revisit the role of momentum conservation.Comment: Proceedings of the conference PSPDE 2012 https://sites.google.com/site/meetingpspde

    Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions

    Get PDF
    A one-dimensional Hamiltonian system with exponential interactions perturbed by a conservative noise is considered. It is proved that energy superdiffuses and upper and lower bounds describing this anomalous diffusion are obtained.FCTEgid

    Anomalous diffusion for a class of systems with two conserved quantities

    Get PDF
    We introduce a class of one dimensional deterministic models of energy-volume conserving interfaces. Numerical simulations show that these dynamics are genuinely super-diffusive. We then modify the dynamics by adding a conservative stochastic noise so that it becomes ergodic. System of conservation laws are derived as hydrodynamic limits of the modified dynamics. Numerical evidence shows these models are still super-diffusive. This is proven rigorously for harmonic potentials
    • …
    corecore