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ABSTRACT. A one-dimensional Hamiltonian system with exponential interactions per-
turbed by a conservative noise is considered. It is proved that energy superdiffuses and
upper and lower bounds describing this anomalous diffusion are obtained.

1. INTRODUCTION

Over the last decade, transport properties of one-dimensional Hamiltonian systems con-
sisting of coupled oscillators on a lattice have been the subject of many theoretical and
numerical studies, see the review papers [9, 11, 25]. Despite many efforts, our knowledge
of the fundamental mechanisms necessary and/or sufficient to have a normal diffusion re-
mains very limited. Nevertheless, it has been recognized that conservation of momentum
plays a major role and numerical simulations provide a strong evidence of the fact that
one dimensional chains of anharmonic oscillators conserving momentum are usually 1 su-
perdiffusive.

An interesting area of current research consists in studying this problem for hybrid mod-
els where a stochastic perturbation is superposed to the deterministic evolution. Even if the
problem is considerably simplified, several open challenging questions can be addressed
for these systems. In [2] it is proved that the thermal conductivity of an unpinned harmonic
chain of oscillators perturbed by an energy-momentum conservative noise is infinite while
if a pinning potential (destroying momentum conservation) is added it is finite. In the same
paper, diverging upper bounds are provided when some nonlinearities are added. This does
not, however, exclude the possibility of having a finite conductivity. Therefore much more
interesting would be to obtain lower bounds showing that the conductivity is infinite and
that energy superdiffuses, but this problem is left open in [2].

In [7], has been introduced and studied numerically, a class of Hamiltonian models for
which anomalous diffusion is observed. There, the investigated systems present strong
analogies with standard chains of oscillators. They can be described as follows. Let V and
U be two non-negative potentials on R and consider the Hamiltonian system (r(t),p(t))t≥0
whose equations of motion are given by

(1)
d px

dt
=V ′(rx+1)−V ′(rx),

drx

dt
=U ′(px)−U ′(px−1), x ∈ Z,

where px is the momentum of the particle x, qx its position and rx = qx − qx−1 is the
“deformation” of the lattice at x. Standard chains of oscillators are recovered for a quadratic
kinetic energy U(p) = p2/2. Now, take V = U , and call η2x−1 = rx and η2x = px. The
dynamics can be rewritten as:

(2) dηx(t) =
(

V ′(ηx+1)−V ′(ηx−1)
)

dt.

1See however the coupled-rotor model which displays normal behavior (see [25], Section 6.4).
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2 CÉDRIC BERNARDIN AND PATRÍCIA GONÇALVES

Notice that with these new variables the energy of the system is simply given by ∑x∈ZV (ηx).
In [7] an anomalous diffusion of energy is numerically observed for a generic potential V .
Then, following the spirit of [2], the deterministic evolution is perturbed by adding a noise
which consists to exchange ηx with ηx+1 at random exponential times, independently for
each bond {x,x+ 1}. The dynamics still conserves the energy ∑x∈ZV (ηx) and the “vol-
ume” ∑x∈Z ηx and destroys all other conserved quantities. As argued in [7], the volume
conservation law is responsible for the anomalous energy diffusion observed for this class
of energy-volume conserving dynamics. This can be shown for quadratic interactions ([7])
with a behavior similar to the one observed in [2]. For nonlinear interactions the problem
is much more difficult.

The aim of this paper is to show that if the interacting potential is of exponential type
then the energy superdiffuses. Therefore, for this class of related models, in a particu-
lar case, we answer to the open question stated in [2]. With some additional technical
work we think that our methods could be carried out to the Toda lattice perturbed by an
energy-momentum conserving noise (considered e.g. in [20]). The exponential form of the
potential V makes the deterministic dynamics given by (2) completely integrable. Never-
theless our proofs do not rely on this exceptional property of the dynamics and could be
potentially generalized to other potentials V . The main ingredient used is the existence of
explicit orthogonal polynomials for the equilibrium measures (see Section 5).

The paper is organized as follows. In Section 2 we define precisely the model. The
results are stated in Section 3. To prove the theorems we first perform a microscopic
change of variables (Section 4) which permits to use a nice orthogonal decomposition of
the generator (Section 5). Roughly speaking the upper bound on the energy superdiffusion
is proved in Section 6 and the lower bound in Section 7. Section 8 contains a comment
about the possible extensions and comparisons of our model to others. In the Appendix we
prove the existence of the infinite dynamics.

Notations: For any a,b ∈R2, a ·b stands for the standard scalar product between a and
b and |a| =

√
a ·a for the norm of a. The transpose of a matrix M is denoted by MT . If

u : x = (x1, . . . ,xn)
T ∈ Rn → u(x) = (u1(x), . . . ,ud(x))T ∈ Rd is a differentiable function

then ∂x j ui(x) denotes the partial derivative of u j with respect to the j-th coordinate at x
and ∇u(x) denotes the differential matrix (the gradient if d = 1) of u at x, i.e. the n× d
matrix whose (i, j)-th entry is ∂x j ui(x); if u := (u1, . . . ,ud)

T : Z→ Rd then we adopt the
same notation to denote the discrete gradient of u defined by ∇u := (∇u1, . . . ,∇ud)

T with
∇ui(x) = ui(x+1)−ui(x).

2. THE MODEL

Let b > 0 and Vb(q) = e−bq − 1+ bq. We consider the system η(t) = {ηx(t) : x ∈ Z}
on RZ defined by its generator L = A+γS, γ > 0, where for local 2 differentiable functions
f : RZ → R we have that

(A f )(η) = ∑
x∈Z

(
V ′

b(ηx+1)−V ′
b(ηx−1)

)
(∂ηx f )(η)

and
(S f )(η) = ∑

x∈Z

(
f (ηx,x+1)− f (η)

)
,

2A function f defined on an infinite product space is said to be local if it depends only on its variable through
a finite number of coordinates.
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where ηx,x+1 is obtained from η by exchanging the variables ηx and ηx+1, namely

(3) ηx,x+1
y =

 ηx+1, if y = x ,
ηx, if y = x+1 ,
ηy, otherwise .

The deterministic system (2) with potential Vb is well known in the integrable systems
literature. It has been introduced in [22] by Kac and van Moerbecke and was shown to be
completely integrable. Consequently, the energy transport is ballistic ([7, 33]). As we will
see this is different when the noise is added: the energy transport is no more ballistic but
superdiffusive.

The existence of the dynamics generated by L is proved in the Appendix for a large set
of initial conditions and in particular for a set of full measure w.r.t. any invariant state µβ̄ ,λ̄
(see bellow for its definition).

The system conserves the energy ∑x∈ZVb(ηx) and the volume ∑x∈Z ηx. In fact, we have

L(Vb(ηx)) =−∇ j̄x−1,x(η), L(ηx) =−∇ j̄′x−1,x(η),

where the microscopic currents are given by

j̄x,x+1(η) =−b2e−b(ηx+ηx+1)+b2(e−bηx + e−bηx+1)− γ∇Vb(ηx)

and
j̄′x,x+1(η) = be−bηx +be−bηx+1 − γ∇ηx.

Every product probability measure µβ̄ ,λ̄ on RZ in the form

µβ̄ ,λ̄ (dη) = ∏
x∈Z

Z̄−1(β̄ , λ̄ )exp{−β̄e−bηx − λ̄ηx}dηx, β̄ > 0 , λ̄ > 0

is invariant for the dynamics.
Let ⟨·⟩µβ̄ ,λ̄

denote the average with respect to µβ̄ ,λ̄ . We define ē := ē(β̄ , λ̄ ), v̄ := v̄(β̄ , λ̄ )
as the averages of the conserved quantities Vb(ηx), ηx with respect to µβ̄ ,λ̄ , respectively,
namely ē = ⟨Vb(ηx)⟩µβ̄ ,λ̄

and v̄ = ⟨ηx⟩µβ̄ ,λ̄
.

A simple computation shows that

(4) ⟨ j̄x,x+1⟩µβ̄ ,λ̄
=−b2(ē−bv̄)2 +b2 and ⟨ j̄′x,x+1⟩µβ̄ ,λ̄

= 2b(ē−bv̄+1).

Hence, in the hyperbolic scaling, the hydrodynamical equations are given by

(5)

{
∂te−b2 ∂q((e−bv)2) = 0
∂tv+2b∂q(e−bv) = 0

and can be written in the compact form ∂tX̄+∂qJ̄(X̄) = 0 with

(6) X̄=

(
e
v

)
and J̄(X̄) =

(
−b2(e−bv)2

2b(e−bv)

)
.

This can be proved before the appearance of the shocks (see [7]). The differential matrix
of J̄ is given by

(∇J̄)(X̄) = 2b
(

−b(e−bv) b2(e−bv)
1 −b

)
.

For given (ē, v̄) we denote by (T̄+
t )t≥0 (resp. (T̄−

t )t≥0) the semigroup on S(R)× S(R)
generated by

(7) ∂tε + M̄T ∂qε = 0, (resp. ∂tε − M̄T ∂qε = 0),
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where

M̄ := M̄(ē, v̄) = [∇J̄](ω̄) and ω̄ =

(
ē
v̄

)
.

We omit the dependence of these semigroups on (ē, v̄) for lightness of the notations. Above
S(R) denotes the Schwartz space of smooth rapidly decreasing functions.

3. STATEMENT OF THE RESULTS

For each integer z ≥ 0, let Hz(x) = (−1)zex2 dz

dxze
−x2

be the Hermite polynomial and

hz(x) = (z!
√

2π)−1Hz(x)e−x2
the Hermite function. The set {hz,z ≥ 0} is an orthonormal

basis of L2(R). Consider in L2(R) the operator K0 = x2 −∆, ∆ being the Laplacian on R.
For an integer k ≥ 0, denote by Hk the Hilbert space induced by S(R) and the scalar product
⟨·, ·⟩k defined by ⟨ f ,g⟩k = ⟨ f ,Kk

0g⟩0, where ⟨·, ·⟩0 denotes the inner product of L2(R) and
denote by H−k the dual of Hk, relatively to this inner product. Let ⟨·⟩ represent the average
with respect to the Lebesgue measure.

We take the infinite system at equilibrium under the Gibbs measure µβ̄ ,λ̄ corresponding
to a mean energy ē and a mean volume v̄. Our goal is to study the energy-volume fluctuation
field in the time-scale tn1+α , α ≥ 0:

(8) Y n,α
t (G) =

1√
n ∑

x∈Z
G(x/n) ·

(
ω̄x(tn1+α)− ω̄

)
,

where for q ∈ R, x ∈ Z,

G(q) =
(

G1(q)
G2(q)

)
, ω̄x =

(
Vb(ηx)

ηx

)
and G1,G2 are test functions belonging to S(R).

If E is a Polish space then D(R+,E) (resp. C(R+,E)) denotes the space of E-valued
functions, right continuous with left limits (resp. continuous), endowed with the Skorohod
(resp. uniform) topology. Let Qn,α be the probability measure on D(R+,H−k ×H−k)
induced by the fluctuation field Y n,α

t and µβ̄ ,λ̄ . Let Pµβ̄ ,λ̄
denote the probability measure on

D(R+,RZ) induced by (η(t))t≥0 and µβ̄ ,λ̄ . Let Eµβ̄ ,λ̄
denote the expectation with respect

to Pµβ̄ ,λ̄
.

Theorem 1. Fix an integer k > 2. Denote by Q the probability measure on C(R+,H−k ×
H−k) corresponding to a stationary Gaussian process with mean 0 and covariance given
by

EQ [Yt(H)Ys(G)] = ⟨ T̄−
t H · χ̄ T̄−

s G⟩
for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Here χ̄ := χ̄(β̄ , λ̄ ) is the equilibrium covariance
matrix 3 of ω̄0. Then, the sequence (Qn,0)n≥1 converges weakly, as n→∞, to the probability
measure Q.

A byproduct of Theorem 1 is a Central Limit Theorem for the energy flux and for the
volume flux through a fixed bond. Despite it is not directly related to the problem of
anomalous diffusion it has a probabilistic interest, see [13, 21, 26]. For that purpose, fix a
site x ∈ Z, let E n

x,x+1(t) (resp. V n
x,x+1(t)) denote the energy (resp. volume) flux through the

bond {x,x+1} during the time interval [0, tn]. By conservation laws, for any x ∈Z it holds
that:

E n
x−1,x(t)−E n

x,x+1(t) :=Vb(ηx(tn))−Vb(ηx(0))

3See (19) for an explicit expression.
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resp. V n

x−1,x(t)−V n
x,x+1(t) := ηx(tn)−ηx(0)

)
.

This, together with the previous result allow us to conclude that

Corollary 3.1. Fix x ∈Z and let Zn,e
t := 1√

n{E
n

x,x+1(t)−Eµβ̄ ,λ̄
[E n

x,x+1(t)]}. For every t ≥ 0,
(Zn,e

t )n≥1 converges in law in the sense of finite-dimensional distributions, as n → ∞, to a
Brownian motion Ze

t with mean zero and covariance given by

EQ[Ze
t Ze

s ] =
2

β̄ 3
(λ̄ −bβ̄ )2s,

for all s ≤ t.

Corollary 3.2. Fix x ∈Z and let Zn,v
t := 1√

n{V
n

x,x+1(t)−Eµβ̄ ,λ̄
[V n

x,x+1(t)]}. For every t ≥ 0,
(Zn,v

t )n≥1 converges in law in the sense of finite-dimensional distributions, as n → ∞, to a
Brownian motion Zv

t with mean zero and covariance given by

EQ[Zv
t Zv

s ] =
2
β̄

s,

for all s ≤ t.

We notice that, according to Corollary 3.1, the limiting energy flux Ze
t has a vanishing

variance for λ̄ = bβ̄ which is equivalent to ē = bv̄. Last equivalence is a consequence of
(17) and (16).

The theorem above means that in the hyperbolic scaling the fluctuations are trivial:
the initial fluctuations are transported by the linearized system of (5). To see a nontrivial
behavior we have to study, in the transport frame, the fluctuations at a longer time scale
tn1+α , with α > 0. Thus, we consider the fluctuation field Ŷ n,α

· , α > 0, defined, for any
G ∈ S(R)×S(R), by

(9) Ŷ n,α
t (G) = Y n,α

t
(
T̄+

tnα G
)
.

According to the fluctuating hydrodynamics theory ([29], pp. 85-96), in the case of a
normal (diffusive) behavior α = 1, the field (Ŷ n,α

t ) t≥0 should converge to the stationary
field (Ŷt ) t≥0 simply related to the solution (Ẑt ) t≥0 of the linear two dimensional vector
valued (infinite-dimensional) stochastic partial differential equation

(10) ∂tẐt = ∇ ·
(

D ∇Ẑt

)
+
√

2D χ̄ ∇ ·W t .

Here Wt is a standard two-dimensional vector valued space-time white noise and the coef-
ficient D := D(ē, v̄) is expressed by a Green-Kubo formula ( see (12)). As above, let Q̂n,α

be the probability measure on D(R+,H−k ×H−k) induced by the fluctuation field Ŷ n,α
t

and µβ̄ ,λ̄ . Our second main theorem shows that the correct scaling exponent α is greater
or equal than 1/3:

Theorem 2. Fix an integer k > 1 and α < 1/3. Denote by Q the probability measure
on C(R+,H−k ×H−k) corresponding to a stationary Gaussian process with mean 0 and
covariance given by

EQ [Yt(H)Ys(G)] = ⟨H · χ̄ G⟩

for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Then, the sequence (Q̂n,α)n≥1 converges weakly,
as n → ∞, to the probability measure Q.
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As in the hyperbolic time scale from the previous result we obtain limiting results for
the energy flux and volume flux. In this case, we need to define the energy and volume flux
through the time dependent bond {ux,α

t (n),ux,α
t (n)+1}, where ux,α

t (n) := ⌊x− −2bλ̄
β̄ tn1+α⌋

and ⌊u⌋ denotes the biggest integer number smaller or equal to u. The justification for
taking this reference frame with precisely this velocity will be given ahead in Remark 6.2.
Now, fix a site x ∈ Z and let E n

ux,α
t (n)

(resp. V n
ux,α

t (n)
(t)) denote the energy (resp. volume)

flux through the bond {ux,α
t (n),ux,α

t (n)+1} during the time interval [0, tn1+α ]. Then, from
the previous result we conclude that

Corollary 3.3. Fix t ≥ 0, x ∈ Z and α < 1/3. Then

lim
n→∞

Eµβ̄ ,λ̄

[(
1√
n

{
E n

ux,α
t (n)(t)−Eµβ̄ ,λ̄

[E n
ux,α

t (n)(t)]
})2

]
= 0.

and

lim
n→∞

Eµβ̄ ,λ̄

[(
1√
n

{
V n

ux,α
t (n)(t)−Eµβ̄ ,λ̄

[V n
ux,α

t (n)(t)]
})2

]
= 0.

Similar results have been obtained in [19] by one of the authors for the asymmetric
simple exclusion. The proof of Corollaries 3.1, 3.2 and 3.3 follows the same arguments
as in [19] once the previous theorems are proved. For that reason we will only give a
sketch of their proof. The proof of the theorems is more problematic since the multi-scale
analysis performed in [19] relies crucially on the existence of a spectral gap so that we
cannot follow [19]. Therefore we propose an alternative approach based on computations
of some resolvent norms.

Theorem 2 does not exclude the possibility of normal fluctuations, i.e. α = 1. In order
to show that the system we consider is really superdiffusive we will show that the transport
coefficient D which appears in (10) is infinite so that the correct scaling exponent α is
strictly smaller than 1. Our third result, stated bellow, shows it is in fact less than 3/4.

With the notations introduced in the previous section, the normalized currents are de-
fined by

(11) Ĵx,x+1(η) =

(
j̄x,x+1(η)
j̄′x,x+1(η)

)
− J̄(ω̄)− (∇J̄)(ω̄)

(
Vb(ηx)− ē

ηx − v̄

)
.

Up to a constant matrix coming from a martingale term (due to the noise) and thus
irrelevant for us (see [2], [7]), the coefficient D is defined by the Green-Kubo formula

(12) D =
∫ ∞

0
C(t)dt,

where

C(t) := Eµβ̄ ,λ̄

[
∑
x∈Z

Ĵx,x+1(η(t))
[
Ĵ0,1(η(0))

]T]
is the current-current correlation function. The signature of the superdiffusive behavior of
the system is seen in the divergence of the integral defining D , i.e. in a slow decay of the
current-current correlation function. We introduce the Laplace transform function F (γ, ·)
of the current-current correlation function. It is defined, for any z > 0 by

F (γ,z) =
∫ ∞

0
e−zt C(t)dt.

Our third theorem is the following lower bound on F (γ,z). Observe that F (γ,z) is a
square matrix of size 2 whose (i, j)-th entry is denoted by Fi, j.
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Theorem 3. Fix γ > 0. For any (i, j) ̸= (1,1) and any z > 0 we have

Fi, j(γ,z) = 0

and there exists a positive constant c := c(γ)> 0 such that for any z > 0,

F1,1(γ,z)≥ cz−1/4.

Moreover, there exists a positive constant C :=C(γ) such that for any z > 0,

(13) C−1F1,1(1,z/γ)≤ F1,1(γ,z)≤CF1,1(1,z/γ).

The lower bound F1,1(γ,z) ≥ cz1/4 means roughly that the current-current correlation
function C(t) is bounded by bellow by a constant times t−3/4. The last part of the theo-
rem is easy to prove but has an important consequence. In [7] numerical simulations are
performed to detect the anomalous diffusion of energy. Since it is difficult to estimate
numerically the time autocorrelation functions of the currents because of their expected
long-time tails, a more tenable approach consists in studying a non equilibrium system in
its steady state, i.e. considering a finite system in contact with two thermostats which fix
the value of the energy at the boundaries. Then we estimate the dependence of the energy
transport coefficient κ(N) with the system size N. The latter is defined as N times the aver-
age energy current. It turns out that κ(N)∼ Nδ with a parameter δ := δ (γ)> 0 increasing
with the noise intensity γ (except for the singular value δ = 1 when γ = 0 which is a man-
ifestation of the ballistic behavior of the Kac-van Moerbecke system). This result is very
surprising since the more stochasticity in the model is introduced, the less the system is
diffusive. The same has been observed for other anharmonic potentials in [7] and also for
the Toda lattice perturbed by an energy-momentum conservative noise ([20]). It has been
argued in [20] that this may be explained by the fact that some diffusive phenomena due
to non-linearities, like localized breathers, are destroyed by the noise. In [3] simulations
have been performed directly with the Green-Kubo formula for other standard anharmonic
chains with the same conclusion: current-current correlation function decreases slower
when the noise intensity increases. If all these numerical simulations reproduce correctly
the real behavior of the models investigated, they dismiss the theories which pretend that
some universality holds, e.g. [32]. It is therefore very important to decide if the phenomena
numerically observed are correct or not.

Assuming that the current-current correlation function C(t) has the time decay C(t)∼t→∞
t−δ ′(γ), the inequality (13) shows that the exponent δ ′ := δ ′(γ) is independent of γ (up to
possible slowly varying functions corrections, i.e. in a Tauberian sense). It is usually ar-
gued but not proved (see e.g. the end of Section 5.3 in [25]) that the exponent δ defined
by the non-equilibrium stationary state is related to δ ′ by the relation δ = 1− δ ′, and is
consequently independent of γ too. Therefore the numerical simulations do not seem to
reflect the correct behavior of the system 4. A possible explanation of the inconsistency
between the numerical observation and our result is simply that the relation δ = 1− δ ′ is
not satisfied. Nevertheless, notice that the last part of our theorem is in fact valid for all the
models cited above. It applies in particular to the models studied in [3] and shows that the
numerical observations of that paper, which are performed for the Green-Kubo formula,
are not consistent with the real behavior of the system.

4It would be very interesting to understand why the numerical simulations are so sensitive to the noise.



8 CÉDRIC BERNARDIN AND PATRÍCIA GONÇALVES

4. A CHANGE OF VARIABLES

To study the energy-volume fluctuation field Y n,α
· , we introduce the following change

of variables ξx = e−bηx , for each x ∈ Z. Then, the previous Markovian system (η(t))t≥0
defines a new Markovian system (ξ (t))t≥0 with state space (0,+∞)Z whose generator L
is equal to b2A + γS , where for local differentiable functions f : (0,+∞)Z → R we have
that

(A f )(ξ ) = ∑
x∈Z

ξx

(
ξx+1 −ξx−1

)
(∂ξx f )(ξ )

and
(S f )(ξ ) = ∑

x∈Z

(
f (ξ x,x+1)− f (ξ )

)
,

where ξ x,x+1 is defined as in (3).
Observe that the energy and volume conservation laws correspond, for the process

(ξ (t))t≥0, to the conservation of the two following quantities ∑x∈Z ξx and ∑x∈Z log(ξx).
The corresponding microscopic currents are defined by the conservation law equations:

L (ξx) =−∇ jx−1,x(ξ ), L (logξx) =−∇ j′x−1,x(ξ ),

where
jx,x+1(ξ ) =−b2ξxξx+1 − γ∇ξx,

and
j′x,x+1(ξ ) =−b2(ξx +ξx+1)− γ∇ log(ξx).

We will use the compact notation

(14) Jx,x+1(ξ ) =
(

jx,x+1(ξ )
j′x,x+1(ξ )

)
.

Since Vb(ηx) = ξx − log(ξx)+1 and ηx = − 1
b log(ξx), we have the following relations

between the microscopic currents

(15) j̄x,x+1(η) = jx,x+1(ξ )− j′x,x+1(ξ ), and j̄′x,x+1(η) =−
1
b

j′x,x+1(ξ ).

If η is distributed according to µβ̄ ,λ̄ then ξ defined by ξx = e−bηx is distributed accord-
ing to the probability measure νβ ,λ on (0,+∞)Z given by

νβ ,λ (dξ ) = ∏
x∈Z

Z−1(β ,λ )1{ξx>0} exp{−βξx +λ log(ξx)}dξx

with Z(β ,λ ) the partition function,

(16) β = β̄ , and λ =−1+ λ̄/b.

Remark that νβ ,λ is nothing but a product probability measure whose marginal follows
a Gamma distribution γλ+1,β−1 with parameter (λ + 1,β−1). In particular, we have Z :=
Z(β ,λ ) = β−(λ+1) Γ(λ +1), where Γ is the usual Gamma function.

Thus, the process (ξ (t))t≥0 has a family of translation invariant measures νβ ,λ parame-
terized by the chemical potentials (β ,λ ) ∈ (0,+∞)× (−1,+∞).

Let Pνβ ,λ be the probability measure on D(R+,(0,+∞)Z) induced by (ξ (t))t≥0 and νβ ,λ
and let Eνβ ,λ denote the expectation with respect to Pνβ ,λ .

Let ⟨·⟩νβ ,λ denote the average with respect to νβ ,λ . The averages ρ := ρ(β ,λ ) and
θ := θ(β ,λ ) of the conserved quantities for (ξ (t))t≥0 at equilibrium under νβ ,λ are defined
by ρ = ⟨ξx⟩νβ ,λ and θ = ⟨log(ξx)⟩νβ ,λ . By a direct computation we get
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(17) ρ = 1+ ē−bv̄ =
λ +1

β
, and θ =−bv̄ =

Γ′(λ +1)
Γ′(λ +1)

− log(β ).

It is understood, here and in the whole paper, that (β ,λ ) are related to (β̄ , λ̄ ) through
(16). We will use the following compact notation, for each x ∈ Z,

ωx =

(
ξx

log(ξx)

)
and ω =

(
ρ
θ

)
.

Observe that ω̄x = Λωx −
(

1
0

)
, where

(18) Λ =

(
1 −1
0 −1/b

)
.

The covariance matrix χ := χ(β ,λ ) of ω0 under νβ ,λ is defined by

χ =

(
⟨(ξ0 −ρ)2⟩νβ ,λ ⟨(ξ0 −ρ)(log(ξ0)−θ)⟩νβ ,λ

⟨(ξ0 −ρ)(log(ξ0)−θ)⟩νβ ,λ ⟨(log(ξ0)−θ)2⟩νβ ,λ

)
.

A simple computation shows that

χ =

(
λ+1
β 2

1
β

1
β (logΓ)′′(λ +1)

)
=

(
∂ 2

β log(Z) −∂β ,λ log(Z)
−∂β ,λ log(Z) ∂ 2

λ log(Z)

)
.

We denote the covariance matrix of ω̄0 under µβ̄ ,λ̄ by χ̄ := χ̄(β̄ , λ̄ ), which is defined by

χ̄ =

(
⟨(Vb(η0)− ē)2⟩µβ̄ ,λ̄

⟨(Vb(η0)− ē)(η0 − v̄)⟩νβ̄ ,λ̄

⟨(Vb(η0)− ē)(η0 − v̄)⟩µβ̄ ,λ̄
⟨(η0 − v̄)2⟩µβ̄ ,λ̄

)
.

Thus, the covariance matrix χ of ω0 under νβ ,λ is related to the covariance matrix χ̄ of
ω̄0 under µβ̄ ,λ̄ , by

(19) χ̄ = ΛχΛT =

(
λ+1
β 2 + 2

β +(logΓ)′′(λ +1) 1
bβ + (logΓ)′′(λ+1)

b
1

bβ + (logΓ)′′(λ+1)
b

(logΓ)′′(λ+1)
b2

)
.

A simple computation shows that ⟨ jx,x+1⟩νβ ,λ =−b2ρ2 and ⟨ j′x,x+1⟩νβ ,λ =−2b2ρ . The
hydrodynamical equations for the process (ξ (t))t≥0 are given by

(20)

{
∂tρ −b2∂q(ρ2) = 0
∂tθ −2b2∂qρ = 0

and can be written in the compact form ∂tX+∂qJ(X) = 0 with

X=

(
ρ
θ

)
and J(X) =

(
−b2ρ2

−2b2ρ

)
.

The differential matrix of J is given by

(∇J)(X) =

(
−2b2ρ 0
−2b2 0

)
.

As above, let (T+
t )t≥0 (resp. (T−

t )t≥0) denote the semigroup on S(R)×S(R) generated by

(21) ∂tε +MT ∂qε = 0, (resp. ∂tε −MT ∂qε = 0),
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where
M := M(ρ,θ) = (∇J)(ω),

ρ and θ are given by (17). We omit the dependence of these semigroups on (ρ,θ) for
lightness of the notations.

We remark that the transposed linearized system of (20) around the constant profiles
(ρ,θ) is given by the first equation on the left hand side of (21). It is easy to show that
M̄ = ΛMΛ−1 and ΛT T̄−

t = T−
t ΛT .

5. ORTHOGONAL DECOMPOSITION

Observe that νβ ,λ is a product of Gamma distributions. Let us recall that the Gamma
distribution γα,k with parameter (α,k) is the probability distribution on (0,+∞) absolutely
continuous with respect to the Lebesgue measure with density fα,k given by

(22) fα,k(q) =
(

kα Γ(α)
)−1

qα−1e−q/k, q > 0.

Thus, we have νβ ,λ (dξ ) = ∏x∈Z

(
fλ+1,β−1(ξx)dξx

)
= ∏x∈Z

(
β fλ+1,1(βξx)dξx

)
. The

generalized Laguerre polynomials (H(λ )
n )n≥0 form an orthogonal basis of the space L2(γλ+1,1).

They satisfy the following equations:

H(λ )
0 = 1,

q
d
dq

H(λ )
n = nH(λ )

n − (n+λ )H(λ )
n−1,(

q
d2

dq2 +(λ +1−q)
d
dq

+n
)

H(λ )
n = 0,

(n+1)H(λ )
n+1(q) = (2n+1+λ −q)H(λ )

n (q)− (n+λ )H(λ )
n−1(q)

(23)

and the normalization condition∫ ∞

0

(
H(λ )

n (q)
)2

fλ+1,1(q)dq =
Γ(λ +n+1)

Γ(λ +1)
1
n!
.

In particular, we have

H(λ )
1 (q) =−q+(λ +1),

H(λ )
2 (q) =

(2+λ )(1+λ )
2

− (λ +2)q+
q2

2
.

(24)

Let Σ be the set composed of configurations σ = (σx)x∈Z ∈ NZ such that σx ̸= 0 only
for a finite number of x. The number ∑x∈Z σx is called the size of σ and is denoted by |σ |.
Let Σn = {σ ∈ Σ ; |σ |= n}. On the set of n-tuples x := (x1, . . . ,xn) of Zn, we introduce the
equivalence relation x ∼ y if there exists a permutation p on {1, . . . ,n} such that xp(i) = yi
for all i ∈ {1, . . . ,n}. The class of x for the relation ∼ is denoted by [x] and its cardinal by
c(x). Then the set of configurations of Σn can be identified with the set of n-tuples classes
for ∼ by the one-to-one application:

[x] = [(x1, . . . ,xn)] ∈ Zn/∼→ σ [x] ∈ Σn

where for any y ∈ Z, (σ [x])y = ∑n
i=1 1{y=xi}. We will identify σ ∈ Σn with the occupation

number of a configuration with n particles, and [x] will correspond to the positions of those
n particles.
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To any σ ∈ Σ, we associate the polynomial function Hβ ,λ
σ given by

Hβ ,λ
σ (ξ ) = ∏

x∈Z
H(λ )

σx (βξx).

Then, the family
{

Hβ ,λ
σ ; σ ∈ Σ

}
forms an orthogonal basis of L2(νβ ,λ ) such that

(25)
∫

Hβ ,λ
σ Hβ ,λ

σ ′ dνβ ,λ = δσ=σ ′∏x∈Z
Γ(λ +σx +1)

Γ(λ +1)
1

σx!
= δσ=σ ′W λ (σ),

where

(26) W λ (σ) := ∏x∈Z
Γ(λ +σx +1)

Γ(λ +1)
1

σx!

and δ denotes the Kronecker function, so that δσ=σ ′ = 1 if σ = σ ′, otherwise it is equal to
zero.

A function F : Σ → R such that F(σ) = 0 if σ /∈ Σn is called a degree n function.
Thus, such a function is sometimes considered as a function defined only on Σn. A local
function f ∈ L2(νβ ,λ ) whose decomposition on the orthogonal basis {Hβ ,λ

σ ; σ ∈ Σ} is

given by f = ∑σ F(σ)Hβ ,λ
σ is called of degree n if and only if F is of degree n. A function

F : Σn →R is nothing but a symmetric function F : Zn →R through the identification of σ
with [x]. We denote by ⟨·, ·⟩ the scalar product on ⊕L2(Σn), each Σn being equipped with
the counting measure. Hence, if F,G : Σ → R, we have

⟨F,G⟩= ∑
n≥0

∑
σ∈Σn

Fn(σ)Gn(σ) = ∑
n≥0

∑
x∈Zn

1
c(x)

Fn(x)Gn(x),

with Fn,Gn the restrictions of F,G to Σn. We recall that c(x) is the cardinal of [x]. Since
(β ,λ ) are fixed through the paper we denote Hβ ,λ

σ by Hσ and W λ (σ) by W (σ).
If a local function f ∈ L2(νβ ,λ ) is written in the form f (ξ ) = ∑σ∈Σ F(σ)Hσ (ξ ) then

we have

(A f )(ξ ) = ∑
σ∈Σ

(AF)(σ)Hσ (ξ ), (S f )(ξ ) = ∑
σ∈Σ

(SF)(σ)Hσ (ξ )

with
(SF)(σ) = ∑

x∈Z
(F(σ x,x+1)−F(σ)),

where σ x,x+1 is obtained from σ by exchanging the occupation numbers σx and σx+1.
Let us now compute the operator A. We have

(A Hσ )(ξ ) = ∑
x∈Z

ξx(ξx+1 −ξx−1)∂ξx Hσ (ξ ).

By the definition of Hσ and by the second equality in (23), it follows that

(A Hσ )(ξ ) = β ∑
x∈Z

(ξx+1 −ξx−1)
(

σxHσ (ξ )− (σx +λ )Hσ−δx(ξ )
)
,

where σ − δx is the configuration where a particle has been deleted at site x (if there was
no particle on site x, then σ −δx = σ ).

Now, noticing that the fourth equality in (23) can be written as

βqH(λ )
n (βq) = (2n+1+λ )H(λ )

n (βq)− (n+λ )H(λ )
n−1(βq)− (n+1)H(λ )

n+1(βq)
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and performing some change of variables, we have that

(A Hσ )(ξ ) = ∑
x,y∈Z
|x−y|=1

a(y− x)(σx +λ )(σy +1)Hσ+δy−δx(ξ )

− ∑
x∈Z

(σx +λ )(σx+1 −σx−1)Hσ−δx(ξ )

+ ∑
x∈Z

(σx +1)(σx+1 −σx−1)Hσ+δx(ξ ).

Here, a(z) =−1 if z =−1, a(z) = 1 if z = 1 and 0 otherwise. It follows that

A= A0 +A−+A+

with

(A0F)(σ) =− ∑
x,y∈Z
|x−y|=1

a(y− x)σx(σy +1+λ )F(σ +δy −δx),

(A+F)(σ) =− ∑
x∈Z

σx(σx+1 −σx−1)F(σ −δx),

(A−F)(σ) = ∑
x∈Z

(σx −1+λ )(σx+1 −σx−1)F(σ +δx).

Observe that if F vanishes outside of Σn then A±F vanishes outside of Σn∓1 and A0 van-
ishes outside of Σn. In other words, A0 keeps fixed the degree of a function, A+ raises the
degree by one while A− lowers the degree by one.

The Dirichlet form D( f ) of a local function f ∈ L2(νβ ,λ ) is defined by

D( f ) = ⟨ f ,(−S f )⟩νβ ,λ =
1
2 ∑

x∈Z

∫ (
f (ξ x,x+1)− f (ξ )

)2 νβ ,λ (dξ ).

Recall that ⟨·, ·⟩νβ ,λ denotes the inner product of L2(νβ ,λ ).
Since f has the decomposition f = ∑σ∈Σ F(σ)Hσ then

(27) D( f ) =
1
2 ∑

x∈Z
∑

σ∈Σ
W (σ)

(
F(σ x,x+1)−F(σ)

)2
.

Let ∆+=
{
(x,y) ∈ Z2 ; y ≥ x+1

}
, ∆−=

{
(x,y) ∈ Z2 ; y ≤ x−1

}
and ∆0 = {(x,x) ; x ∈ Z}.

We denote by D1 the Dirichlet form of a symmetric simple one dimensional random walk,
i.e.

D1(F) =
1
2 ∑

x∈Z
(F(x+1)−F(x))2,

where F : Z→ R is such that ∑x∈Z F2(x)< ∞.
We denote by D2 the Dirichlet form of a symmetric simple random walk on Z2 where

jumps from ∆± to ∆0 and from ∆0 to ∆± have been suppressed and jumps from (x,x) ∈ ∆0
to (x±1,x±1) ∈ ∆0 have been added, i.e.

D2(F) =
1
2 ∑
|e|=1

∑
x∈∆±,x+e∈∆±

(F(x+ e)−F(x))2 +
1
2 ∑

x∈∆0

(F(x± (1,1))−F(x))2 ,

where F : Z2 → R is a symmetric function such that ∑x∈Z2 F2(x)< ∞.
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Lemma 5.1. Let f = ∑2
n=1 ∑σ∈Σn Fn(σ)Hσ be a local function such that F1 (resp. F2) is

of degree 1 (resp. degree 2). There exists a positive constant C :=C(λ ), independent of f ,
such that

C−1 [D1(F1)+D2(F2)]≤ D( f )≤C [D1(F1)+D2(F2)] .

Proof. Observe that
• If σ ∈ Σ1, then W (σ) = (λ +1).
• If σ ∈ Σ2, σ = δx + δy, x ̸= y, then W (σ) = (λ + 1)2; if σ ∈ Σ2, σ = 2δx, then

W (σ) = [(λ +2)(λ +1)]/2.
This follows from the relation Γ(z+1) = zΓ(z). Then, by using (27) and the identification
of functions F : Σn → R of degree n with their representations as symmetric functions on
Zn, the claim follows. �

6. TRIVIALITY OF THE FLUCTUATIONS

In this section we prove Theorems 1 and 2 and Corollaries 3.1, 3.2 and 3.3 above.
The proof of Theorems 1 and 2 is standard and relies on a careful analysis of martingales
associated to the respective density fields. For this reason we present only the sketch of
their proofs. For the interested reader we refer to Chapter 11 of [23]. We notice that
the restrictions on k appearing in the statement of those theorems come from tightness
estimates, that we do not prove here since they follow from very similar computations to
those presented in [23].

To approach the proof of theorems we notice that since Vb(ηx)− 1 = ξx − log(ξx),
ηx = −b−1 log(ξx), the problem is reduced to study the fluctuation field of the conserved
quantities for the process (ξ (t))t≥0 at equilibrium under the probability measure νβ ,λ . The
fluctuation field for (ξ (t))t≥0 is defined by

(28) Z n,α
t (G) =

1√
n ∑

x∈Z
G(x/n) ·

(
ωx(tn1+α)−ω

)
,

where G is a test function belonging to S(R)×S(R). Recalling (18) we have

(29) Y n,α
t (G) =

1
√

n ∑
x∈Z

(ΛT G)(x/n) · (ωx(tn1+α)−ω) = Z n,α
t (ΛT G).

By the relation M̄ = ΛMΛ−1, we are able to translate any result about the convergence
of Z n,α

· into a corresponding result for Y n,α
· .

6.1. The hyperbolic scaling. For any local function g := g(ξ ) we define the projection
Pρ,θ g of g on the fields of the conserved quantities by

(Pρ,θ g)(ξ ) = (∇g̃)(ρ,θ) · (ω0 −ω)

where g̃(ρ,θ) = ⟨g⟩νβ ,λ and ∇g̃ is the gradient of the function g̃.
We have that

Proposition 1 (Boltzmann-Gibbs principle I). For every H ∈ S(R)×S(R) and every t > 0,

lim
n→∞

Eνβ ,λ

(∫ t

0

1
√

n ∑
x∈Z

H(x/n) ·
[
τxVJ0,1(ξ (sn))

]
ds

)2
= 0,

where for a local function g we define Vg(ξ ) := g(ξ )− g̃(ρ,θ)−Pρ,θ g(ξ ) and for ξ ∈
(0,+∞)Z, τxg(ξ ) := g(τxξ ), τxξ (y) := ξ (x+ y) and J0,1 is given in (14).
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Since we prove a refined version of this proposition we omit its proof. As a consequence
of last result, we get that the fluctuation field (Z n,0

· )n≥1 converges in law (in the sense of
Theorem 1) to Z 0

· solution of the equation at the right hand side of (21). Theorem 1 is a
simple consequence of this fact.

In order to prove Corollary 3.1 and Corollary 3.2 we follow the approach first presented
in [26] and considered also in [21] (resp. [19]) for the symmetric (resp. asymmetric) simple
exclusion. For that reason we sketch the main steps of the proof. For more details we refer
the reader to, for example, the proof of Theorem 4.2 of [19]. The main goal is to relate the
energy and volume flux with the density field and to use Theorem 1. For that purpose and
whenever the total energy (resp. volume) at η is finite we can write down the energy (resp.
volume) flux through the bond {x,x+1} during the time interval [0, tn], as:

E n
x,x+1(t) := ∑

y≥x+1

{
Vb(ηy(tn))−Vb(ηy(0))

}
(

resp. V n
x,x+1(t) := ∑

y≥x+1

{
ηy(tn)−ηy(0)

})
.

In such case, we can relate the energy (resp. volume) flux given above with the energy-
volume fluctuation field as

E n
x,x+1(t) := Y n

t (H1
x )−Y n

0 (H1
x )(

resp. V n
x,x+1(t) := Y n

t (H2
x )−Y n

0 (H2
x )
)
,

where

H1
x (y) =

(
1{y≥x}

0

)
, H2

x (y) =
(

0
1{y≥x}

)
.

Since the function 1{y≥x} does not belong to our space of test functions for which we
derived Theorem 1 we first show that

Proposition 6.1. For every t ≥ 0,

lim
ℓ→∞

Eνβ ,λ

[(
E n

x,x+1(t)− (Y n
t (G1

ℓ,x)−Y n
0 (G1

ℓ,x))
)2]

= 0,

(resp. lim
ℓ→∞

Eνβ ,λ

[(
V n

x,x+1(t)− (Y n
t (G2

ℓ,x)−Y n
0 (G2

ℓ,x))
)2]

= 0,

where

G1
ℓ,x(y) =

(
Gℓ,x(y)

0

)
, G2

ℓ,x(y) =
(

0
Gℓ,x(y)

)
and Gℓ,x(y) := (1− y/ℓ)1{x≤y≤x+ℓ}.

The proof of last result follows the same lines as in the proof of Proposition 4.1 of [19]
and for that reason we omitted it. We notice that, at this point we are still not able to apply
Theorem 1 since G1

ℓ,x and G2
ℓ,x are not functions in S (R). Therefore, we approximate

in L2(R) each one of these functions by smooth functions for which Theorem 1 holds.
Then, the proof of Corollary 3.1 and 3.2 follows combining the previous proposition with
Theorem 1. For more details on this argument, we refer the reader to [19].
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Finally, in order to compute the limiting variance, for example for the energy flux, we
do the following. Here we take x = 0 to simplify the notation

EQ[Ze
t Ze

s ] = EQ

[{
Yt(H1

0 )−Y0(H1
0 )
}{

Ys(H1
0 )−Y0(H1

0 )
}]

= lim
ℓ→∞

EQ

[
Yt(G1

ℓ,0)Ys(G1
ℓ,0)−Yt(G1

ℓ,0)Y0(G1
ℓ,0)

−Ys(G1
ℓ,0)Y0(G1

ℓ,0)+Y0(G1
ℓ,0)Y0(G1

ℓ,0)
]

Now, to compute last expectation we use the change of variables. Notice that for H,G ∈
S (R) we have that EQ[Z

0
t (H)Z 0

0 (G)] :=
⟨
T−

t H ·χG
⟩
. Combining this with (29), it

follows that EQ[Yt(H)Y0(G)] :=
⟨
T−

t (ΛT H) ·χΛT G
⟩
. By the definition of (T−

t )t≥0 we
have for G1,G2 test functions in S(R):

T−
t

(
G1(x)
G2(x)

)
=

(
1
ρ

(
G2(x−2b2ρt)−G2(x)

)
+G1(x−2b2ρt)

G2(x)

)
.

As a consequence we obtain that

EQ[Ze
t Ze

s ] =
(

1− 1
ρ

)2(λ +1
β 2

)
× lim

ℓ→∞

∫
R

(
Gt
ℓ(x)G

s
ℓ(x)−Gt

ℓ(x)Gℓ(x)−Gs
ℓ(x)Gℓ(x)+Gℓ(x)Gℓ(x)

)
dx,

where for t ≥ 0, G t
ℓ(x) := Gℓ,0(x − 2b2ρt). Now, using (16) and (17) the proof ends.

Analogously, repeating the computations above, replacing H1
0 by H2

0 we get the covariance
for the volume flux.

6.2. The longer time scale. Since in the hyperbolic time scale the initial fluctuations for
the field Z n,α

· are transported by the transposed linearized system given on the right hand
side of (21), we redefine the fluctuation field Ẑ n,α

· , α > 0, on G ∈ S(R)×S(R), by

Ẑ n,α
t (G) = Z n,α

t
(
T+

tnα G
)
.

By Dynkin’s formula, see for example Appendix 1, Section 5 of [23]

M n,α
t (G) = Ẑ n,α

t (G)− Ẑ n,α
0 (G)−

∫ t

0

{
n1+αL

(
Ẑ n,α

s (G)
)
+∂sẐ

n,α
s (G)

}
ds

is a martingale with quadratic variation given by

⟨M n,α⟩t =
∫ t

0
n1+αL

(
Ẑ n,α

s (G)
)2

−2n1+α
(
Ẑ n,α

s (G)
)

L
(
Ẑ n,α

s (G)
)

ds.

A simple computation shows that Eνβ ,λ [⟨M
n,α⟩t ] vanishes as n goes to ∞ for α < 1. This

is equivalent to saying that the martingale M n,α
t vanishes as n goes to ∞ in L2(Pνβ ,λ ), for

α < 1. Observe that, by definition of (T+
t )t≥0, we have

∂sẐ
n,α

s (G) =−
nα
√

n ∑
x∈Z

MT [∂q
(
T+

snα G
)
(x/n)

]
· (ωx(sn1+α)−ω)

=−
nα
√

n ∑
x∈Z

[
∂q
(
T+

snα G
)
(x/n)

]
·M(ωx(sn1+α)−ω).
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On the other hand, the first term in the integral part of the martingale M n,α
t (G) is equal to

nα
√

n ∑
x∈Z

n
(
(T+

snα G)

(
x+1

n

)
− (T+

snα G)

(
x
n

))
·
(

Jx,x+1(ξ (sn1+α)) − ⟨Jx,x+1⟩νβ ,λ

)
.

Performing a Taylor expansion, we can replace this term, up to a term vanishing as n goes
to ∞ in L2(Pνβ ,λ ), by

nα
√

n ∑
x∈Z

(
(∂qT+

snα G)(x/n)
)
·
(

Jx,x+1(ξ (sn1+α)) − ⟨Jx,x+1⟩νβ ,λ

)
.

Thus, in order to show that

(30) lim
n→∞

Eνβ ,λ

[(
Ẑ n,α

t (G)− Ẑ n,α
0 (G)

)2
]
= 0,

it remains to show that

lim
n→∞

Eνβ ,λ

( nα
√

n

∫ t

0
ds ∑

x∈Z
(∂qT+

snα G)(x/n) ·Θx(ξ (sn1+α))

)2
= 0

where for ξ ∈ (0,+∞)Z

Θx(ξ ) = Jx,x+1(ξ ) − ⟨Jx,x+1⟩νβ ,λ −M (ωx −ω).

Observe that in this formula, M := M(ρ,θ) is the differential with respect to (ρ,θ) of
the function ⟨Jx,x+1⟩νβ ,λ as computed below (21). A simple computation shows that for
ξ ∈ (0,+∞)Z

Θx(ξ ) =
(

−b2(ξx+1 −ρ)(ξx −ρ)− (γ +b2ρ)∇ξx
−∇(b2ξx + γ log(ξx))

)
.

The discrete gradient terms appearing in the previous expression, permit to perform
another discrete integration by parts and the resulting terms vanish in L2(Pνβ ,λ ) as n goes
to ∞, for α < 1. Using the smoothness of the function G, we see that it only remains to
show the following theorem with φ(s,q) equal to the first component of the column vector
∂qT+

s G.

Theorem 4 (Boltzmann-Gibbs principle II). Fix α < 1/3 and let φ : R+×R→R be such
that for any t ≥ 0, φ(t, ·) ∈ S(R). For every t > 0

lim
n→∞

Eνβ ,λ

[(∫ t

0

nα
√

n ∑
x∈Z

φ(snα ,x/n)(ξx(sn1+α)−ρ)(ξx+1(sn1+α)−ρ)ds

)
2

]
= 0

Proof. In the following, C,C0,C1, . . . denote constants independent of n whose values can
change from line to line.

Let fs(ξ ) be the function defined by

fs(ξ ) = ∑
x∈Z

φ(s,x/n)Hδx+δx+1(ξ ) =−β 2 ∑
x∈Z

φ(s,x/n)(ξx −ρ)(ξx+1 −ρ).

The last equality follows from (24) and (17).
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We have the following upper bound

Eνβ ,λ

[(∫ t

0
fsnα (ξ (sn1+α))ds

)2
]
≤C

∫ t

0
⟨ fsnα ,(s−1 −n1+αL )−1 fsnα ⟩νβ ,λ ds

=
C

n1+α

∫ t

0

⟨
fsnα ,

(
1

sn1+α −L

)−1

fsnα

⟩
νβ ,λ

ds

≤
C

n1+α

∫ t

0

⟨
fsnα ,

(
1

sn1+α − γS

)−1

fsnα

⟩
νβ ,λ

ds.

In the first inequality above we used Lemma 3.9 of [28] applied to this setting. We notice
that since our test functions depend on time, that lemma has to be modified as written here.
To prove the last result one can simply adapt the proof of Lemma 4.3 of [10] to this case.

In order to simplify notations, let us define ε = 1/sn1+α .
We denote by Σ0

2 the set of configurations σ of Σ2 such that σ = 2δx, x ∈ Z, and Σ±
2 the

complementary set of Σ0
2 in Σ2, i.e. the set of configurations σ ∈ Σ2 such that σ = δx +δy,

y ̸= x ∈ Z. Observe that fsnα is a function of degree 2 with a decomposition in the form
fsnα = ∑σ∈Σ2 Φsnα (σ)Hσ which satisfies Φsnα (σ) = 0 if σ ∈ Σ0

2. We have that (see e.g.
[28]) ⟨

fsnα ,(ε − γS )−1 fsnα

⟩
νβ ,λ

= sup
g

{
2⟨ fsnα ,g⟩νβ ,λ − ε⟨g ,g⟩νβ ,λ − γD(g)

}
where the supremum is taken over local functions g ∈ L2(νβ ,λ ). Decompose g appearing
in this variational formula as g = ∑σ G(σ)Hσ . Recall that {Hσ ; σ ∈ Σ} are orthogonal,
that the function fsnα is a degree 2 function such that Φsnα (σ) = 0 for any σ /∈ Σ±

2 and
formula (27) for the Dirichlet form D(g). Thus, we can restrict this supremum over degree
2 functions g such that G(σ) = 0 if σ ∈ Σ0

2. Then, by Lemma 5.1, we have

⟨
fsnα ,(ε − γS )−1 fsnα

⟩
νβ ,λ

≤ sup
G

∑
x ̸=y

Φsnα (x,y)G(x,y)− ε ∑
(x,y)∈Z2

x ̸=y

G2(x,y)

−C ∑
|e|=1

∑
(x,y)∈∆±

(x,y)+e∈∆±

(
G((x,y)+ e)−G(x,y)

)2


where C := C(λ ,γ), ∆± = {(x,y) ∈ Z2 ; x ̸= y} and as usual we identify the functions
defined on Σn with symmetric functions defined on Zn.

In order to get rid of the geometric constraints appearing in the last term of the varia-
tional formula, for any symmetric function G defined on the set ∆±, we denote by G̃ its
extension to Z2 defined by

G̃(x,y) = G(x,y) if x ̸= y, G̃(x,x) =
1
4 ∑
|e|=1

G((x,x)+ e).
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It is trivial that

∑
(x,y)∈Z2

G̃2(x,y)≤C ∑
(x,y)∈Z2

x ̸=y

G2(x,y),

and

∑
|e|=1

∑
(x,y)∈Z2

(
G̃((x,y)+ e)− G̃(x,y)

)2

≤C ∑
|e|=1

∑
(x,y)∈∆±

(x,y)+e∈∆±

(
G((x,y)+ e)−G(x,y)

)2
.

Thus, we have⟨
fsnα ,(ε − γS )−1 fsnα

⟩
νβ ,λ

≤C0 sup
G

 ∑
(x,y)∈Z2

Φsnα (x,y)G(x,y)−C1ε ∑
(x,y)∈Z2

G2(x,y)

−C2 ∑
|e|=1

∑
(x,y)∈Z2

(
G((x,y)+ e)−G(x,y)

)2


where the supremum is now taken over all symmetric local functions G : Z2 → R. Notice
that the last variational formula is equal to the resolvent norm, for a simple symmetric two
dimensional random walk, of the function Φsnα . By using Fourier transform one can easily
show that this supremum is equal to

C0

4

∫
[0,1]2

|Φ̂snα (k)|2

C1ε +4C2 ∑2
i=1 sin2(πki)

dk

where the Fourier transform Φ̂snα of Φsnα is given by

Φ̂snα (k) = ∑
(x,y)∈Z2

Φsnα (x,y)e2iπ(k1x+k2y), k = (k1,k2) ∈ [0,1]2.

By definition of fsnα , we have Φsnα (x,y) =
1
2

(
φ(snα ,x/n)+φ(snα ,y/n)

)
if |x− y| = 1

and 0 otherwise. Consequently, we have

⟨
fsnα ,(ε − γS )−1 fsnα

⟩
νβ ,λ

≤
C0

16

∫
[0,1]2

∣∣∣∑x∈Z φ(snα ,x/n)e2iπx(k1+k2)
∣∣∣2

C1ε +4C2 ∑2
i=1 sin2(πki)

dk

=
C0

16

∫
[0,2]

(∫
[0,1]

1[sup(1−p,1),inf(1,p)](p)
∣∣∑x∈Z φ(snα ,x/n)e2iπxp

∣∣2
C1ε +4C2 sin2(πk1)+4C2 sin2(π(p− k1))

dk1

)
d p

=
C0

16

∫
[0,1]

(∫
[0,1]

∣∣∑x∈Z φ(snα ,x/n)e2iπxp
∣∣2

C1ε +4C2 sin2(πk1)+4C2 sin2(π(p− k1))
dk1

)
d p
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where we used the change of variables p = k2 +k1 for the first equality and the periodicity
of the functions involved for the second one. It follows that⟨

fsnα ,(ε − γS )−1 fsnα

⟩
νβ ,λ

≤
C0

16

∫
[0,1]

∣∣∣∣∣∑x∈Zφ(snα ,x/n)e2iπxp

∣∣∣∣∣
2

d p
∫
[0,1]

dk1

C1ε +4C2 sin2(πk1)

≤
C
√

ε

∫
[0,1]

∣∣∣∣∣∑x∈Zφ(snα ,x/n)e2iπxp

∣∣∣∣∣
2

d p.

Observe now that∫
[0,1]

∣∣∣∣∣∑x∈Zφ(snα x/n)e2iπxp

∣∣∣∣∣
2

d p = ∑
x∈Z

φ2(snα ,x/n)≤Cn.

Putting everything together, we get that

Eνβ ,λ

[(∫ t

0

nα
√

n ∑
x∈Z

φ(snα ,x/n)(ξx(sn1+α)−ρ)(ξx+1(sn1+α)−ρ)ds
)2]

≤ Ctn2α−1

n1+α

∫ t

0

n
√

ε
ds.

Since ε := 1/sn1+α last expression vanishes as n goes to ∞, if α < 1/3. �

Now, in order to prove Corollary 3.3 we follow the same arguments as in the proof
of Proposition 9.3 of [19] and we proceed as follows. Whenever the total energy (resp.
volume) at η is finite we can write down:

E n
ux,α

t (n)(t) := ∑
y≥ux,α

t (n)

{
Vb(ηy(tn1+α))−Vb(ηy(0))

}
,

(
resp. V n

ux,α
t (n)(t) := ∑

y≥ux,α
t (n)

{
ηy(tn1+α)−ηy(0)

})
.

(31)

In order to justify the previous equalities one can repeat the same arguments as used in the
hyperbolic scaling. Now, we use the change of variables to define the energy (resp. vol-
ume) flux through the time-dependent bond {ux,α

t (n),ux,α
t (n)+1} during the time interval

[0, tn1+α ]. For that purpose, we define the flux fields in terms of ξx such that

Ẽ n
x−1,x(t)− Ẽ n

x,x+1(t) := ξx(tn1+α)−ξx(0)(
resp. Ṽ n

x−1,x(t)− Ṽ n
x,x+1(t) := log(ξx(tn1+α))− log(ξx(0))

)
.

As above, we have that

Ẽ n
ux,α

t (n)(t) := ∑
y≥ux,α

t (n)

{
ξy(tn1+α)−ξy(0)

}
(

resp. Ṽ n
ux,α

t (n)(t) := ∑
y≥ux,α

t (n)

{
log(ξy(tn1+α))− log(ξy(0))

})
and in this case we can write the previous fields in terms of Ẑn,α

t . A simple computation
shows that Proposition 6.1 can be similarly stated for the fluxes above. Moreover, by (15)
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we have that

E n
ux,α

t (n)(t) := Ẽ n
ux,α

t (n)(t)− Ṽ n
ux,α

t (n)(t), V n
ux,α

t (n)(t) :=−1
b
Ṽ n

ux,α
t (n)(t).

Then, applying (30) to G1
ℓ,x(y) =

(
Gℓ,x(y)

0

)
we obtain that

lim
n→∞

Eνβ ,λ

[(
1√
n

{
Ẽ n

ux,α
t (n)(t)−Eνβ ,λ [Ẽ

n
ux,α

t (n)(t)]
})2

]
= 0.

On the other hand, applying (30) to

G̃ℓ,x(y) =
( 1

ρ Gℓ,x(y−ux,α
t (n))

−Gℓ,x(y−ux,α
t (n))

)
we obtain that

lim
n→∞

Eνβ ,λ

[(
1
ρ

1√
n

{
Ẽ n

ux,α
t (n)(t)−Eνβ ,λ [Ẽ

n
ux,α

t (n)(t)]
}

− 1√
n

{
Ṽ n

ux,α
t (n)(t)−Eνβ ,λ [Ṽ

n
ux,α

t (n)(t)]
})2

]
= 0.

Now, Corollary 3.3 follows easily from the previous results.

Remark 6.2. From (20), the hydrodynamic equation of ρ is independent of θ and it can
be rewritten as ∂tρ −2b2ρ∂qρ = 0. Following the system along the characteristics for ρ ,
that is, removing the velocity 2b2ρ from the system, we do not see a time evolution for ρ ,
and since 1/ρ∂tρ − ∂tθ = 0, nor for θ . Therefore, translating the velocity 2b2ρ in terms
of the original variables it corresponds to 2bλ̄/β̄ and that is the reason why we took the
time dependent bond as written in Corollary 3.3.

7. DIFFUSIVITY

In this section we prove Theorem 3. Our proof is based on the resolvent methods intro-
duced in [4, 24] and developed in few other contexts (e.g. [5, 27, 31]). Some differences
with these previous works are the presence of two and not only one conserved quantity and
the degeneracy of the symmetric part of the generator.

The main steps of the proof are the following. First we use the microscopic change of
variables and express the Laplace transform of the current-current correlation function as a
resolvent norm in a suitable Hilbert space (see (33)). Then, we rewrite this resolvent norm
as the supremum over the set of local functions of a functional acting on these functions
(see (36)). To get a lower bound we restrict the supremum over degree two functions. The
estimate of the value of the functional for a given degree two function remains in general
very difficult. Thus we replace the functional restricted to the set of degree two functions
by an equivalent functional simpler to estimate. This is accomplished through Lemma 7.2,
Lemma 7.3 and Lemma 7.4. In the context of the asymmetric simple exclusion, this re-
placement step is called the “free particles approximation” ([4]) or the “hard core removal”
([24]). It is then possible to estimate the value of this equivalent functional for a suitable
degree two test function.

We fix ρ > 0,θ ∈ R and denote by β ,λ the chemical potentials given by (17). Let also
(β̄ , λ̄ ) be given in terms of (β ,λ ) by (16).
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Recall the definition of Ĵx,x+1 given in (11). We introduce the normalized currents jx,x+1,
j′x,x+1 and Jx,x+1 corresponding to the process (ξ (t))t≥0, which are defined by

jx,x+1(ξ )
= jx,x+1(ξ )−⟨ jx,x+1⟩νβ ,λ −∂ρ⟨ jx,x+1⟩νβ ,λ (ξx −ρ)−∂θ ⟨ jx,x+1⟩νβ ,λ (log(ξx)−θ),

j′x,x+1(ξ )
= j′x,x+1(ξ )−⟨ j′x,x+1⟩νβ ,λ −∂ρ⟨ j′x,x+1⟩νβ ,λ (ξx −ρ)−∂θ ⟨ j′x,x+1⟩νβ ,λ (log(ξx)−θ),

Jx,x+1(ξ ) = jx,x+1(ξ )− j′x,x+1(ξ ).

Since ⟨ jx,x+1⟩νβ ,λ =−b2ρ2 and ⟨ j′x,x+1⟩νβ ,λ =−2b2ρ , we get

jx,x+1(ξ ) =−b2(ξx −ρ)(ξx+1 −ρ)− (γ +b2ρ)∇ξx

j′x,x+1(ξ ) =−∇(b2ξx + γ log(ξx)).
(32)

For any local compactly supported functions f ,g : (0,+∞)Z → R we define the semi-
inner product ≪ f ,g ≫:=≪ f ,g ≫β ,λ of f and g by

≪ f ,g ≫

= ∑
x∈Z

(
⟨τx f g⟩νβ ,λ −⟨ f ⟩νβ ,λ ⟨g⟩νβ ,λ

)
= lim

k→∞ ∑
|x|≤k

(
⟨τx f g⟩νβ ,λ −⟨ f ⟩νβ ,λ ⟨g⟩νβ ,λ

)
= lim

k→∞

1
2k+1 ∑

|x|≤k

{
∑

|y−x|≤k

(
⟨τx+y f τyg⟩νβ ,λ −⟨ f ⟩νβ ,λ ⟨g⟩νβ ,λ

)}

= lim
k→∞

⟨(
1

√
2k+1 ∑

|x|≤k
(τx f −⟨ f ⟩νβ ,λ )

)(
1

√
2k+1 ∑

|x|≤k
(τxg−⟨g⟩νβ ,λ )

)⟩
νβ ,λ

where the third equality follows from the invariance of νβ ,λ by the shift. Observe also that
the first sum on Z is in fact a finite sum since f and g are assumed to be local functions.
We denote by H0 the space generated by the local compactly supported functions and the
semi-inner product ≪ ·, · ≫. Observe that any constant or gradient functions are equal to
0 in H0.

By (32), the normalized current associated to the volume is a gradient and this shows
that Fi, j(γ ,z) = 0 if (i, j) ̸= (1,1). By the definition of Ĵx,x+1 and by (15), we are only
interested in the behavior, as z → 0, of

L(z) =≪ J0,1,(z−L )−1J0,1 ≫=
∫ ∞

0
e−zt ≪ J0,1(t) , J0,1(0)≫ dt.

Since gradient functions are equal to 0 in H0, this is equivalent to estimate

(33) L(z) = b4 ≪W0,1,(z−L )−1W0,1 ≫

where Wx,y is the local function Wx,y = (ξx −ρ)(ξy −ρ).
In this section we prove that there exists a constant C > 0 such that

(34) ≪W0,1,(z−L )−1W0,1 ≫≥ Cz−1/4.

But before proving (34) let us show (13) which is a direct consequence of the following
lemma.
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Lemma 7.1. For any γ > 0, there exists a constant C :=C(γ) such that

≪W0,1 , (z/γ −b2A −S )−1W0,1 ≫≤ C ≪W0,1,(z−b2A − γS )−1W0,1 ≫

and

≪W0,1,(z−b2A − γS )−1W0,1 ≫≤ C ≪W0,1 , (z/γ −b2A −S )−1W0,1 ≫ .

Proof. Assume γ > 1 the case γ < 1 being similar. By Lemma 2.1 of [4] we have the
variational formula for ≪W0,1,(z−L )−1W0,1 ≫, where L = b2A + γS , given by

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1A f ≫

}
,

where the supremum is carried over functions f belonging to the domain of the generator
L or equivalently to a dense subspace included in this domain, say the space of smooth
local compactly supported functions. We have that

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1A f ≫

}
=sup

f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ−1≪ A f ,(z/γ −S )−1A f ≫

}
≥sup

f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ ≪ A f ,(z/γ −S )−1A f ≫

}
=sup

f

{
2γ−1/2≪W0,1, f ≫−≪ f ,(z/γ −S ) f ≫−b4 ≪ A f ,(z/γ −S )−1A f ≫

}
where the inequality comes from γ > 1 and last equality is obtained by the change of f
into γ−1/2 f . The last term is equal to

γ−1 ≪W0,1 , (z/γ −b2A −S )−1W0,1 ≫

and this proves the first inequality of the lemma.
For the second one we proceed similarly:

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1A f ≫

}
=sup

f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ−1≪ A f ,(z/γ −S )−1A f ≫

}
≤sup

f

{
2 ≪W0,1, f ≫−γ−1≪ f ,(z/γ −S ) f ≫−b4γ−1≪ A f ,(z/γ −S )−1A f ≫

}
=sup

f

{
2γ1/2 ≪W0,1, f ≫−≪ f ,(z/γ −S ) f ≫−b4 ≪ A f ,(z/γ −S )−1A f ≫

}
=γ ≪W0,1 , (z/γ −b2A −S )−1W0,1 ≫ .

�

Recall the orthogonal decomposition described in Section 5. Let f = ∑σ F(σ)Hσ and
g = ∑σ G(σ)Hσ be two centered local functions. The configuration σ shifted by z ∈ Z is
denoted by τzσ , that is τzσ(x) = σ(x− z). We identify Fn,Gn, the restrictions of F,G to
Σn, with symmetric functions on Zn. By (25) we have that

≪ f ,g ≫= ∑
z∈Z

∑
σ∈Σ

F(τzσ)G(σ)W (σ),

where W was defined in (26).
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With some abuse of notations, we denote by ≪ F,G ≫ the scalar product defined by

≪ F,G ≫= ∑
z∈Z

∑
σ∈Σ

F(τzσ)G(σ)W (σ).

We also introduce the inner product ≪ ·, · ≫free defined by

≪ F,G ≫free = ∑
y∈Z

∑
σ∈Σ

F(τyσ)G(σ).

Since the function W is invariant by the shift, we have a very simple relation between
these two inner products:

(35) ≪ F,G ≫=≪ W 1/2F,W 1/2G ≫free .

On the set Σn we introduce the equivalence relation ⋆ defined by σ ⋆σ ′ if and only if
there exists u ∈ Z such that τuσ = σ ′. Let Σ⋆

n = Σn/⋆ be the set of classes for this relation
and Σ⋆ = ∪n≥1Σ⋆

n. We can rewrite the scalar product ≪ ·, · ≫free as

≪ F,G ≫free= ∑
σ̄∈Σ⋆

F̄(σ̄)Ḡ(σ̄).

Here F̄ is defined by F̄(σ̄) =
(
∑y∈Z τyF

)
(σ) where σ is any element of σ̄ . The function

W being invariant by the shift, we define W (σ̄) by W (σ), σ ∈ σ̄ , σ̄ ∈ Σ⋆. Then, we have

≪ F,G ≫= ∑
σ̄∈Σ⋆

W (σ̄)F̄(σ̄)Ḡ(σ̄).

Lemma 7.2. There exists a constant C :=C(n,λ ) such that for any local function F : Σn →
R of degree n it holds that

(1)
C−1 ≪ F,F ≫free ≤≪ F,F ≫≤ C ≪ F,F ≫free .

(2)

C−1 ≪ F,−SF ≫free ≤≪ F,−SF ≫≤ C ≪ F,−SF ≫free .

Moreover, for any positive real z > 0

≪ F,(z− γS)−1F ≫=≪ W 1/2F , (z− γS)−1 W 1/2F ≫free .

Proof. Recall the definition of W from (26). Thus, W is bounded from above (resp. from
bellow) by a constant C(n,λ ) (resp. C−1(n,λ )) independent of σ ∈ Σn. This is enough
to conclude 1. In order to prove 2, it is enough to use (35) and the fact that for any local
function F : Σ →R we have that S(W 1/2F) =W 1/2SF . Finally, for a local function F of
degree n, we have by (35) and the fact that

≪ F,(z− γS)−1F ≫= sup
G of degree n

{2 ≪ F,G ≫−≪ G,(z− γS)G ≫} ,

the following equality

≪ F,(z− γS)−1F ≫=≪ W 1/2F,(z− γS)−1W 1/2F ≫free,

which proves the last assertion.
�

Our goal is to get a lower bound for ≪W0,1,(z−L )−1W0,1 ≫ which by Lemma 2.1 of
[4] can be rewritten in the variational form

(36) sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1A f ≫

}
.
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Any element σ̄ ∈ Σ⋆
n can be identified with an element of Nn−1 through the application

which associates to (α1, . . . ,αn−1) ∈ Nn−1 the class of the configuration σ = δ0 + δα1 +
. . .+δα1+...+αn−1 .

Observe also that S is a self-adjoint operator with respect to ≪ ·, · ≫ and with re-
spect to ≪ ·, · ≫free. We restrict the previous supremum over degree 2 functions f =

∑(x,y)∈Z2 F([x,y])H[x,y]. In order to keep notation simple, whenever we identify a configu-
ration σ ∈ Σn with [x] ∈ Zn we will simply write F(x), instead of F([x]).

Up to some irrelevant multiplicative constant, a lower bound is given by

sup
Fof degree 2

{
2F(0,1)−∥F∥2

1,z −b4∥A−F∥2
−1,z −b4∥A+F∥2

−1,z −b4∥A0F∥2
−1,z

}
where ∥F∥2

±1,z =≪ F,(z− γS)±1F ≫. We also introduce the corresponding H±1,z-norms
associated to ≪ ·, · ≫free: ∥F∥2

±1,z,free =≪ F,(z− γS)±1F ≫free, for F : Σ → R.
By Lemma 7.2, there exists a constant C such that this lower bound is bounded from

bellow by

sup
Fof degree 2

{
2F(0,1)−C∥F∥2

+1,z,free

−b4∥W 1/2A−F∥2
−1,z,free −b4∥W 1/2A+F∥2

−1,z,free −b4∥W 1/2A0F∥2
−1,z,free

}
.

Let us first show that if F is of degree 2 then the contributions given by ∥W 1/2A−F∥2
−1,z,free

and ∥W 1/2A0F∥2
−1,z,free are equal to zero.

The function W is constant and equal to (λ +1) on Σ1 so that W 1/2A−F =
√

λ +1A−F .
It is easy to check that the degree one function A−F satisfies

(A−F)(u) = (λ −1)
(

F(u−1,u)−F(u,u+1)
)
.

For any degree 1 function G, we have

≪ A−F,G ≫free= ∑
u,y∈Z

G(u+ y)(λ −1)
(

F(u−1,u)−F(u,u+1)
)
= 0

by a telescopic sum argument. This shows that A−F is equal to zero in the Hilbert space
generated by ≪ ·, · ≫free.

Recall that if F is a degree 2 function, i.e. a symmetric function on Z2, then F is
identified with a function F̄ defined on N by

F̄(α) = ∑
u∈Z

F(u,u+α)

and as a consequence, for F and G degree 2 functions it holds that

(37) ≪ F,G ≫free = ∑
α∈N

F̄(α)Ḡ(α).

Observe that (A0F)(u,v) is equal to

2(1+λ )
(

F(u−1,u)−F(u,u+1)
)
, if u = v,

(1+λ )
(

F(u−1,u+1)−F(u,u+2)
)
+(2+λ )

(
F(u,u)−F(u+1,u+1)

)
,

if (u,v) = (u,u+1),

(1+λ )
(

F(u−1,v)−F(u+1,v)+F(u,v−1)−F(u,v+1)
)
, if |u− v| ≥ 2
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and

(38) W (u,u) =
(λ +1)(λ +2)

2
, W (u,v) = (λ +1)2 for u ̸= v.

It is then easy to show that
W 1/2(A0F)(α) = 0

for any α ∈ N. Putting together the previous result and (37) it follows that:

∥W 1/2A0F∥2
−1,z,free =≪ W 1/2A0F , (z− γS)−1(W 1/2A0F)≫free

= ∑
α∈N

W 1/2(A0F)(α) (λ − γS)−1[W 1/2(A0F)](α) = 0.

Lemma 7.3. There exists a positive constant C such that for every symmetric function F
of degree 2, if F̄(α) = ∑z∈Z F(z,z+α), then

C−1 ∑
x,y ̸=0,
|x−y|=1

(
F̄(y)− F̄(x)

)2
≤≪ F,−SF ≫free ≤ C ∑

x,y̸=0,
|x−y|=1

(
F̄(y)− F̄(x)

)2
.

Proof. This follows easily from the following equalities together with (37):

SF(0) = ∑
y∈Z

(SF)(y,y)

= ∑
y∈Z

(
F(y+1,y+1)−F(y,y)

)
+
(

F(y−1,y−1)−F(y,y)
)
= 0,

SF(1) = ∑
y∈Z

(SF)(y,y+1)

= ∑
y∈Z

(
F(y−1,y+1)−F(y,y+1)

)
+ ∑

y∈Z

(
F(y,y+2)−F(y,y+1)

)
= 2
(

F̄(2)− F̄(1)
)
,

SF(α) = ∑
y
(SF)(y,y+α)

= ∑
y∈Z

(
F(y−1,y+α)−F(y,y+α)

)
+ ∑

y∈Z

(
F(y+1,y+α)−F(y,y+α)

)
+ ∑

y∈Z

(
F(y,y+α +1)−F(y,y+α)

)
+ ∑

y∈Z

(
F(y,y+α −1)−F(y,y+α)

)
= 2
(

F̄(α +1)− F̄(α)
)
+2
(

F̄(α −1)− F̄(α)
)
, α ≥ 2.

�

To any degree 3 function G, i.e. a symmetric function G on Z3, the function Ḡ is
identified with a function on N2:

Ḡ(u,v) = ∑
y∈Z

G(y,u+ y,u+ v+ y).

Since G is symmetric on Z3, then Ḡ is symmetric on Z2. As above, for F and G degree
3 functions it holds that

(39) ≪ F,G ≫free = ∑
(α,β )∈N2

F̄(α ,β )Ḡ(α ,β ).
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Let D3, acting on the local functions on N2, be defined by

D3(Ḡ) = ∑
u≥1

(
Ḡ(u+1,0)− Ḡ(u,0)

)2
+ ∑

v≥1

(
Ḡ(0,v+1)− Ḡ(0,v)

)2

+
(

Ḡ(1,0)− Ḡ(0,1)
)2

+ ∑
u,v≥1

(
Ḡ(u+1,v)− Ḡ(u,v)

)2

+
(

Ḡ(u,v+1)− Ḡ(u,v)
)2

.

(40)

This is the Dirichlet form of a symmetric nearest neighbors random walk on N2 where all
the jumps between {0}×N and N∗×N∗5, all the jumps from N×{0} and N∗×N∗ and
all the jumps from 0 have been suppressed, and a jump between (0,1) and (1,0) has been
added.

Lemma 7.4. There exists a constant C > 0 such that for any symmetric function G on Z3

C−1D3(Ḡ) ≤≪ G,−SG ≫free ≤ CD3(Ḡ).

Proof. We have the following equalities

SG(0,0) = 0,

SG(0,1) = 2
(

Ḡ(0,2)− Ḡ(0,1)
)
+
(

Ḡ(1,0)− Ḡ(0,1)
)
,

SG(0,β ) = 2
(

Ḡ(0,β +1)− Ḡ(0,β )
)
+2
(

Ḡ(0,β −1)− Ḡ(0,β )
)
, β ≥ 2,

SG(1,0) = 2
(

Ḡ(2,0)− Ḡ(1,0)
)
+
(

Ḡ(0,1)− Ḡ(1,0)
)

SG(α,0) = 2
(

Ḡ(α +1)− Ḡ(α,0)
)
+2
(

Ḡ(α −1)− Ḡ(α ,0)
)
, α ≥ 2,

SG(α,β ) =
(

Ḡ(α +1,β )− Ḡ(α,β )
)
+
(

Ḡ(α ,β +1)− Ḡ(α,β )
)

+1{α≥2}

(
Ḡ(α −1,β +1)− Ḡ(α,β )

)
+1{α≥2}

(
Ḡ(α −1,β )− Ḡ(α,β )

)
+1{β≥2}

(
Ḡ(α +1,β −1)− Ḡ(α,β )

)
+1{β≥2}

(
Ḡ(α ,β −1)− Ḡ(α,β )

)
, α,β ≥ 1.

We recognize in these expressions the generator of a symmetric nearest neighbors ran-
dom walk on N2 where

• all the jumps between {0}×N and N∗×N∗, all the jumps between N×{0} and
N∗×N∗, and all the jumps from 0 have been suppressed;

• a jump between (0,1) and (1,0) with rate 1 has been added;
• jumps between (α ,β ) and (α ± 1,β ∓ 1) for (α,β ) ∈ N∗×N∗ with rate 1 have

been added.
• the non vanishing jumps on N×{0} and on {0}×N have been multiplied by 2.

This together with (39), implies the lemma. �
We choose a degree 2 symmetric function F such that

F(α) = z−1/4e−z3/4(α−1), α ≥ 1,

F(0) = F̄(1).
(41)

This function exists since given a function G defined on N we can find a symmetric func-
tion F defined in Z2 such that F̄ = G. For that purpose, take F(x,y) = G(|y− x|)[ϕ(x)+

5Here and in the sequel N∗ := N\{0}
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ϕ(y)] where the function ϕ is defined on Z and is such that ∑x∈Z ϕ(x) = 1/2. Then for any
α ∈ N, F̄(α) = ∑u∈Z F(u,u+α) = G(α)∑u∈Z[ϕ(u)+ϕ(u+α)] = G(α).

Observe that with this choice, by Lemma 7.3,

(42) ≪ F,−SF ≫free∼ z1/4, F̄(1) = z−1/4, z ∑
α∈N

F̄2(α)∼ z−1/4.

It remains to estimate the last contribution given by ∥W 1/2G∥2
−1,z,free where G = A+F

is a degree 3 function.

Lemma 7.5. Let G =A+F where F is defined by (41). There exists a constant C > 0 such
that

∥W 1/2G∥2
−1,z,free ≥Cz−1/4.

Proof. For any u,v,w ∈ Z, we have

G(u,u+1,u+2) = F(u,u+1)−F(u+1,u+2),

G(u,u+1,v) = F(u,v)−F(u+1,v), v > u+1,

G(v,u,u+1) = F(v,u)−F(v,u+1), v < u,

G(u,u,u+1) = 2
(

F(u,u)−F(u,u+1)
)
,

G(u,u,u−1) = 2
(

F(u−1,u)−F(u,u)
)
,

G(u,v,w) = 0 otherwise.

Let us now compute Ḡ(u,v), u,v ∈ N. We get

Ḡ(0,1) =−Ḡ(1,0) = 2F̄(0)−2F̄(1),

Ḡ(1,v) = F̄(v+1)− F̄(v), v ≥ 2,

Ḡ(u,1) = F̄(u)− F̄(u+1), u ≥ 2,

Ḡ(u,v) = 0 otherwise.

(43)

By (41) we have that Ḡ(0,1) = Ḡ(1,0) = 0. Also notice that Ḡ(u,u) = 0 and by (38) we
have that W 1/2(u,v) = (1+λ ) for u ̸= v.

It follows, by Lemma 7.4, that ∥W 1/2G∥2
−1,z,free is upper bounded by the variational

formula:

∥W 1/2G∥2
−1,z,free = sup

R

2 ∑
(u,v)∈N2

R(u,v)W 1/2(u,v)Ḡ(u,v)−C0D3(R)


= sup

R

2(1+λ ) ∑
(u,v)∈N2

R(u,v)Ḡ(u,v)−C0D3(R)
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where the supremum is taken over local functions on N2. By (43), we have that

∑
(u,v)∈N2

R(u,v)Ḡ(u,v)

= ∑
v≥2

R(1,v)
(

F̄(v+1)− F̄(v)
)
− ∑

u≥2
R(u,1)

(
F̄(u+1)− F̄(u)

)
= ∑

v≥3
F̄(v)

(
R(1,v−1)−R(1,v)

)
− ∑

u≥3
F̄(u)

(
R(u−1,1)−R(u,1)

)
+ F̄(2)

(
R(2,1)−R(1,2)

)
= ∑

v≥2
F̄(v)

(
R(1,v−1)−R(1,v)

)
− ∑

u≥2
F̄(u)

(
R(u−1,1)−R(u,1)

)
.

(44)

We use now the following parametrization of R. For k ≥ 1, v ∈ Z, let us define

R(k,v) = ϕ(k−1,v− k), v ≥ k, R(u,k) = ϕ(k−1,−u+ k),u ≥ k,

where {ϕ(k, ·) ; k ≥ 0} are functions from Z→R. We have the following lower bound for
D3(R):

D3(R)≥ ∑
u,v≥1

(
R(u+1,v)−R(u,v)

)2
+
(

R(u,v+1)−R(u,v)
)2

which is nothing but the Dirichlet form of a random walk where only jumps connecting
sites of N∗×N∗ have been conserved. With the choice of the parametrization for R and
this lower bound, it is not difficult to show there exists a constant C > 0 such that

D3(R)≥C ∑
k≥0

∑
v∈Z

(
ϕ(k,v+1)−ϕ(k,v)

)2
+
(

ϕ(k+1,v)−ϕ(k,v)
)2

.

The right hand side of the previous inequality is the Dirichlet form of a symmetric simple
random walk on N×Z.

By (44), we get

∑
(u,v)∈N2

R(u,v)Ḡ(u,v) = ∑
u∈Z

ϕ(0,u)
(

F̃(u−1)− F̃(u)
)

where F̃ : Z→R is defined by F̃(u) =−F̄(u+2)1{u≥0}− F̄(1−u)1{u≤−1}. We extend the
function ϕ defined on N×Z to Z2 by defining ϕ(−k,u) = ϕ(k,u), k ≥ 1,u ∈ Z. Observe
then that

D3(R)≥C ∑
k≥0

∑
v∈Z

(
ϕ(k,v+1)−ϕ(k,v)

)2
+
(

ϕ(k+1,v)−ϕ(k,v)
)2

=
C
2 ∑

k∈Z
∑
v∈Z

(
ϕ(k,v+1)−ϕ(k,v)

)2
+
(

ϕ(k+1,v)−ϕ(k,v)
)2

.

Consequently we have, for suitable positive constants C1,C2:

∥W 1/2G∥2
−1,z,free ≤C1 sup

ϕ

{
2 ∑

u∈Z
ϕ(0,u)

(
F̃(u−1)− F̃(u)

)
−C2 ∑

(u,v)∈Z2

|u−v|=1

(
ϕ(u)−ϕ(v)

)2}
.

(45)
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A standard Fourier computation shows this supremum is of order z−1/4. Indeed, let û
be the Fourier transform of the function u : Zn → R, defined by

û(k) = ∑
x∈Zn

e2iπx·ku(x), k = (k1, . . . ,kn),

and denote by û∗(k) the complex conjugate of û(k). Using the expression of the sum of a
convergent geometric series, we obtain the following expression for the Fourier transform
Ψ(k1,k2) of the function (x,y) ∈ Z2 → δ0(y)F̃(x):

Ψ(k1,k2) =−z−1/4e−z3/4

{
1

1− e2iπk1 e−z3/4 −
e−2iπk1

1− e−2iπk1 e−z3/4

}
which satisfies

|Ψ(k1,k2)| ≤
C3

√
z

z3/2 +C4 sin2(πk1)
for some positive constants C3,C4. The supremum appearing in (45) is then given by

C−1
2

∫
[0,1]2

|Ψ(k1,k2)|2

z+4sin2(πk1)+4sin2(πk2)
dk1dk2.

Then the result follows by a standard study of this integral. �
To obtain (34), by (42) and Lemma 7.5, it suffices to take a test function in the form aF

with F given by (41) and a sufficiently small.

8. STOCHASTIC PERTURBATIONS OF HAMILTONIAN SYSTEMS

In this section we discuss some other possible stochastic perturbations and make some
connections with the recent models considered in [8]. Let us start with the Hamiltonian
system (2) with potential V and generator A given by

A = ∑
x∈Z

(
V ′(ηx+1)−V ′(ηx−1)

)
∂ηx .

The energy ∑x∈ZV (ηx) and the volume ∑x∈Z ηx are conserved by these dynamics. Remark
that in fact ∑x∈Z η2x and ∑x∈Z η2x+1 are also conserved and that we cannot exclude the case
that still many others exist. This is the case for example for the exponential interaction for
which an infinite number of conserved quantities can be explicitly identified. Anyway, we
are only interested in these two first quantities. The product probability measures µβ ,λ
defined by

µβ ,λ (dη) = ∏
x∈Z

Z(β ,λ )−1 exp{−βV (ηx)−ληx} dηx,

where

Z(β ,λ ) =
∫ +∞

−∞
exp(−βV (r)−λ r) dr.

are invariant for the infinite dynamics.
In [7] we proposed to perturb this deterministic dynamics by the Poissonian noise con-

sidered in this paper and conserving both the energy and the volume. One could also
consider the “ Brownian” noise whose generator S is given by S = ∑x∈ZY 2

x where

Yx=(V ′(ηx+1)−V ′(ηx−1))∂ηx+(V ′(ηx−1)−V ′(ηx))∂ηx+1+(V ′(ηx)−V ′(ηx+1))∂ηx−1 ,

is the vector field tangent to the curve{
(ηx−1,ηx,ηx+1) ∈ R3 ;

x+1

∑
y=x−1

ηy = 0,
x+1

∑
y=x−1

V (ηy) = 1
}
.
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It is easy to see that the process with generator L = A+S conserves the energy and the vol-
ume and has µβ ,λ as invariant measures. A priori, it should be possible to extend our result
to this system for V of exponential type but the noise S seems to have a quite complicated
expression in the orthogonal basis we used in this paper. The advantage of the Poissonian
noise is its very simple form. Notice also that the Poissonian noise is a weaker perturba-
tion of the Hamiltonian dynamics than the Brownian noise in the sense it is less mixing.
Indeed, consider the discrete torus TN of length N and the Brownian noise SN = ∑x∈TN Y 2

x
restricted to the manifold M N

π,E defined by

M N
π,E =

{
η ∈ RTN

; ∑
y∈TN

ηy = π, ∑
y∈TN

V (ηy) = E

}
, E > 0,π ∈ R.

Then SN is ergodic on M N
π,E but this is not true for the restriction to M N

π,E of the Poissonian
noise.

We could also decide to conserve energy and not the volume by adding a suitable pertur-
bation. The invariant states are then given by µβ ,0, β > 0. If V is even, a simple Poissonian
noise consists to change the sign of ηx independently on each site x at random exponential
times. In this case one can prove, as in [6], that the energy diffuses in the sense that the
Green-Kubo formula converges to a well defined finite value. For a generic V a Brownian
noise with generator S given by S = ∑x∈Z K2

x with Kx =V ′(ηx+1)∂ηx −V ′(ηx)∂ηx+1 makes
the job.

Consider now the case where we want to add a stochastic perturbation conserving only
the volume. It does not seem to be easy to define a simple Poissonian noise with such a
property. A Brownian noise is obtained by the following scheme. Fix β > 0, consider the
vector field Xx = ∂ηx+1 − ∂ηx which is tangent to the hyperplane {(ηx,ηx+1) ∈ R2 ; ηx +
ηx+1 = 1} and define the Langevin operator Sβ by

Sβ =
1
2 ∑

x∈Z
e−Hβ ,λ Xx(eHβ ,λ Xx)

=
1
2 ∑

x∈Z
X2

x +
β
2 ∑

x∈Z

(
V ′(ηx+1)−V ′(ηx)

)
Xx

where Hβ ,λ = β ∑x∈ZV (ηx)+λ ∑x∈Z ηx. Observe that Sβ depends on β but is independent
of λ . The operator Sβ is a nonpositive self-adjoint operator in L2(µβ ,λ ) for any λ and
Sβ (∑x∈Z ηx) = 0. Then, the perturbed volume-conserving model has a generator LV

β given
by

(46) LV
β = A+ γSβ

where γ > 0 is a parameter fixing the strength of the noise. By construction, the Markov
process generated by LV

β has µβ ,λ as a set of invariant probability measures. In fact, using
the same methods as in [7, 18] one can prove that the only space-time invariant probability
measures with finite local entropy density are mixtures of the (µβ ,λ )λ . We can also rewrite
LV

β as

LV
β = ∑

x∈Z

{(
1− γβ

2

)
V ′(ηx+1)+ γβV ′(ηx)−

(
1+

γβ
2

)
V ′(ηx−1)

}
∂ηx

+ γ ∑
x∈Z

(∂ 2
ηx
−∂ 2

ηx,ηx+1
).
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The microscopic flux jx,x+1 associated to the volume conservation law is defined by

LV
β (ηx) =−∇ jx−1,x, jx−1,x =−

(
1+

γβ
2

)
V ′(ηx−1)−

(
1− γβ

2

)
V ′(ηx).

The semi-discrete directed polymer model considered in [8] is, up to an irrelevant scaling
factor 2, recovered by taking V (η) = e−η , β = 1 and γ = 2 (see (3.7) in [30]). In [8] the
authors show that for a particular non stationary initial condition (“wedge”), by developing
a very nice theory of Macdonald processes, the system belongs to the Kardar-Parisi-Zhang
universality class ([30]). Unfortunately one can not use their results or their methods to
derive a more precise picture for the model with exponential interactions considered in this
paper. For other potentials V the theory developed by Borodin and Corwin in [8] can not
be adapted but it would be very interesting to see if one can relate the models generated
by LV

β to the semi-discrete directed polymer and deduce some qualitative information from
the latter. The use of the variational formulas considered in this paper could be the way.

APPENDIX A. EXISTENCE OF THE INFINITE DYNAMICS

In this section we prove existence of the infinite volume dynamics (ξ (t))t≥0. We focus
here on the process ξ but the same proof can be carried for the process η (or just define
η in terms of ξ by ηx(t) = −b−1 logξx(t), x ∈ Z. To simplify notations we will assume
b = 1.

Since the interaction coming from the deterministic part is non-quadratic at infinity,
proving the existence of the infinite dynamics is a non trivial task. Nevertheless nice so-
phisticated techniques have been introduced by Dobrushin and Fritz in [12]. Here, we
follow closely the approach of [14] (see also [15, 16]) adapted to our case. By itself, the
strategy of the proof of existence of solutions is standard: we consider finite subsystems
and prove compactness of this family by means of an a priori bound for a quantity Ē which
plays the role of an energy density. The obtention of this a priori bound is however non
trivial and is the main step to get the existence of the dynamics. The aim of this appendix
is to show how to get such an a priori bound. The a priori bound we derive here for the
infinite dynamics is also valid for finite subsystems corresponding to a finite set Λ⊂Z with
a bound which is independent of the size of Λ. This proves then that the finite subsystems
form a compact family from which one can extract a subsequence converging to the infinite
dynamics.

We have first to specify the space of allowed configurations Ω ⊂ (0,+∞)Z. For x ∈ Z,
let g(x) = 1+ log(1+ |x|) and denote by E(ξ ,µ,σ), ξ ∈ (0,+∞)Z, µ ∈ Z, σ > 0, the
quantities

E(ξ ,µ ,σ) = ∑
|x−µ|≤σ

(1+2ξx − log(ξx)),

Ē(ξ ) = sup
µ∈Z

sup
σ≥g(µ)

σ−1E(ξ ,µ ,σ).

The quantity Ē is called the logarithmic fluctuation of energy and the set Ω is defined
as

Ω := {ξ ∈ (0,+∞)Z : Ē(ξ )<+∞}.

The configuration space Ω is equipped with the product topology and with the associated
Borel structure. It is easy to see that νβ ,λ (Ω) = 1 for any β > 0 and λ >−1.
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Let N(t) = {Nx,x+1(t) ; x ∈ Z} be a collection of independent Poison processes of inten-
sity γ > 0. The equations of motion corresponding to the generator L read as

(47) dξx = ξx(ξx+1 −ξx−1)dt +∇((ξx −ξx−1)dNx−1,x(t)) , x ∈ Z.
Let D(R+,R) denote the space of càdlàg functions of R+ into R with the Skorohod

topology and let D= [D(R+,R)]Z equipped with the product topology and the associated
Borel field B. The smallest σ -algebra on which all projectionsrestricted to the time in-
terval [0, t] are measurable will be denoted by Bt . Finally, suppose that we are given a
probability measure P on B such that our Poisson processes Nx,x+1 are realized as compo-
nents of the random element of D.

Definition A.1. A Bt -adapted mapping ξ (t) := ξ (t,N) of D into itself is called a tempered
solution of (47) with initial configuration ξ 0 ∈ Ω if ξ (0) = ξ 0, almost each trajectory
ξ (·,N) satisfies the integral form of (47), and the logarithmic energy fluctuation Ē(ξ (t))
is bounded on finite intervals of time with probability one.

Theorem 5. For any ξ 0 ∈ Ω, there exists a unique tempered solution of (47) with initial
configuration ξ 0 ∈ Ω.

As explained above, the main step to prove this theorem is to obtain an a priori bound
that we prove in Proposition 3. For a complete proof, we refer to [14] ( or [15, 16]).

Now we notice that the Gibbs state νβ ,λ , (β ,λ ) ∈ (0,+∞)× (−1,+∞) is formally in-
variant for the infinite dynamics generated by (ξ (t))t≥0. This can be seen by observing
that

∫
(L f )(ξ )dνβ ,λ (dξ ) = 0 for nice functions f : Ω → R. Nevertheless, some care has

to be taken to prove this. Indeed, we do not know that L is really the generator of the
semigroup generated by (ξ (t))t≥0 on the space of bounded measurable functions on Ω in
the usual Hille-Yosida theory. This can be a very difficult question that we prefer to avoid
(see [16]). Instead we use the fact that the infinite dynamics can be approximated by finite
subsystems.

Proposition 2. For any β > 0,λ > −1, the probability measure νβ ,λ is invariant for the
process (ξ (t))t≥0.

Proof. Let n ≥ 2 and consider the local dynamics generated by the generator Ln = An +
γSn where

(An f )(ξ ) =
n

∑
x=−n

ξx(ξx+1 −ξx−1)∂ξx f (ξ )

− ξn+1

(
ξn +

λ +1
β

)
∂ξn f (ξ )+ξ−n−1

(
ξ−n +

λ +1
β

)
∂ξ−n−1

f (ξ ),

(Sn f )(ξ ) =
n

∑
x=−n

(
f (ξ x,x+1)− f (ξ )

)
where f : Ω → R is a compactly supported continuously differentiable function. The dy-
namics is essentially finite-dimensional since the particles outside the box {−n−1, . . . ,n+
1} are frozen. Thus, the classical Hille-Yosida theory can be applied. The boundary con-
ditions have been chosen to have∫

(Ln f )(ξ )dνβ ,λ (ξ ) = 0

for any compactly supported continuously differentiable function f which shows that νβ ,λ
is invariant for the local dynamics. Since, as a consequence of the a priori bound, the
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infinite dynamics is obtained as a limit of finite local dynamics, this implies that νβ ,λ is
invariant for the infinite dynamics. �

Then this defines a strongly continuous semigroup of contractions (Pt)t≥0 on the Hilbert
space L2(Ω,B,νβ ,λ ). Moreover, Itô’s formula shows that its generator is a closable ex-
tension of L given by A + γS since for any local compactly supported continuously
differentiable function f , we have

(Pt f )(ξ ) = f (ξ )+
∫ t

0
(PsL f )(ξ )ds, ξ ∈ Ω, t ≥ 0.

A.1. Logarithmic energy fluctuation. We have first to consider a clever smooth modifi-
cation of Ē. Let 0 < λ < 1 and consider a twice continuously differentiable nonincreasing
function φ : R → (0,1) such that φ(u) = eλ (1−u) if u ≥ 2, φ(u) = (1+λ +λ 2/2)e−λ if
u ≤ 1, and φ is concave for u ≤ 3/2, convex if u ≥ 3/2. Finally, 0 ≤ −φ ′(u) ≤ λφ(u) ≤
eλ (1−u), φ(u)≥ e−λ (1+u) and |φ ′′(u)| ≤ φ(u) for all u > 0.

For x ∈ Z and σ ≥ 1 we define the function f as

f (x,σ) =
∫
R

φ(|x− y|/σ)e−2λ |y|dy.

In [16] are proved the following properties on f :

c1 exp(−λ |x|/σ)≤ f (x,σ)≤ c2 exp(−λ |x|/σ),

f (x,σ)≤ f (y,σ)e2λ |x−y|, ∂σ f (x,σ)≤ e2λ |x−y|∂σ f (y,σ).

|∂x f (x,σ)| ≤ min{∂σ f (x,σ),σ−1 f (x,σ)},
g(x)|∂x f (x−µ ,σ)| ≤ 4g(|µ|+σ)(∂σ f )(x−µ ,σ).

(48)

Here the constants depend only on λ .
For ξ ∈ (0,+∞)Z, µ ∈ Z and σ > 0, consider the function

(49) W (ξ ,µ,σ) = ∑
x∈Z

f (x−µ,σ)(1+2ξx − logξx)

and let

(50) W̄ (ξ ) = sup
µ∈Z

sup
σ≥g(µ)

{
σ−1W (ξ ,µ,σ)

}
.

Observe that by (48),

(51) W (ξ ,µ,σ)≥ c1e−λ E(ξ ,µ,σ),

for all ξ ∈ (0,+∞)Z, µ ∈ Z and σ > 0.
For ξ ∈ (0,+∞)Z, we also consider the function

(52) Ŵ (ξ ) = sup
µ∈Z

{W (ξ ,µ,g(µ))
g(µ)

}
.

The following lemma shows that these two modifications of the logarithmic energy
fluctuation are equivalent to Ē.

Lemma A.1. There exists a constant C such that for all ξ ∈ (0,+∞)Z:

C−1Ŵ (ξ )≤ W̄ (ξ )≤CŴ (ξ ), C−1Ē(ξ )≤ W̄ (ξ )≤CĒ(ξ ).
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Proof. The inequality Ŵ (ξ ) ≤ W̄ (ξ ) for all ξ ∈ (0,+∞)Z, is trivial. Let us prove the
second one by taking σ ≥ g(µ), µ ∈ Z and denoting 1+2ξx − logξx by Hx. By (48), we
have

W (ξ ,µ,σ)≤ c2 ∑
x∈Z

exp(−λ |x−µ |/σ)Hx = c2

∞

∑
n=0

e−λn/σ ∑
|x−µ|=n

Hx

= c2(1− e−λ/σ )
∞

∑
n=0

e−λn/σ ∑
|x−µ|≤n

Hx,

where the last equality follows from ∑|x−µ|=n Hx = ∑|x−µ|≤n Hx −∑|x−µ|≤n−1 Hx and a dis-
crete integration by parts. Let r ≥ 1 be the integer such that r−1 < g(µ)≤ r and decom-
pose the set {x ∈ Z ; |x−µ | ≤ n} as ∪K+1

j=1 Λ j where the Λ j are non intersecting intervals of
length r for j = 1, . . . ,K and ΛK+1 is of length at most r−1. Observe that K+1 is of order
n/g(µ). By using (51), we have easily that

∑
x∈Λ j

Hx ≤C g(µ)Ŵ (ξ )

where C depends only on λ . Thus we get

W (ξ ,µ,σ)≤C(1− e−λ/σ )
∞

∑
n=0

e−λn/σ nŴ (ξ )≤C′σŴ (ξ )

which concludes the proof of the second inequality.
The proof of C−1Ē(ξ ) ≤ W̄ (ξ ) ≤ CĒ(ξ ) for all ξ ∈ (0,+∞)Z, is the same. The first

inequality follows from (51) and the constant can be taken equal to c1e−λ . The second
inequality follows from a similar argument to the one used above. �
A.2. The a priori bound.

Proposition 3 (A priori bound). For each w ≥ 1 there exists a continuous function qw(t),
t ≥ 0, such that

P
{

sup
0≤s≤t

W̄ (ξ (s))> exp(qw(t)g(u))
}
≤ e−u

for each u ≥ 1, t ≥ 0, whenever W̄ (ξ 0) ≤ w and (ξ (t))t≥0 is a tempered solution of (47)
with initial condition ξ 0.

Proof. We consider a tempered solution (ξ (t))t≥0 of (47) with initial configuration ξ 0 ∈Ω.
For each k ≥ 1, µ ∈ Z and t ≥ 0 we define the stochastic process ρk by

(53) ρk(t) = kg(µ)−C0

∫ t

0
g(|µ |+ |ρk(s)|)Z′(s)ds

where C0 :=C0(γ,λ ) is a positive constant that will be chosen later and

Z(t) =
∫ t

0
W̄ (ξ (s))ds.

Since the function f (·) is positive, W̄ (·) is also positive and this turns Z(·) positive. The
trajectories of ρk are differentiable, decreasing and satisfy ρk+1(t)−ρk(t) ≤ g(µ) a.s. for
each t ≥ 0. We consider also the sequence of stopping times τk = inf{t ≥ 0; ρk(t)≤ g(µ)}
which satisfy τk < τk+1 < +∞ and limk→∞ τk = ∞ a.s. We evaluate now the stochastic
differential of t →W (ξ (t),µ,ρk(t)) for t ≤ τk (so that ρk(t)≥ 1). This is given by

d [W (ξ (t),µ,ρk(t))] = I(k)0 (t)dt −C0(∂σW )(ξ (t),µ ,ρk(t))g(|µ|+ρk(t))W̄ (ξ (t))dt

+ dI(k)1 (t)
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where

I(k)0 (t) =2 ∑
x∈Z

(
f (x−µ,ρk(t))− f (x+1−µ ,ρk(t))

)
ξx(t)ξx+1(t)

+ ∑
x∈Z

(
f (x+1−µ,ρk(t))− f (x−1−µ ,ρk(t))

)
ξx(t)

(54)

and

dI(k)1 = ∑
x∈Z

f (x−µ ,ρk)
{

2∇
(
(ξx −ξx−1)dNx−1,x

)
−∇

(
(logξx − logξx−1)dNx−1,x

)}
.

We first estimate the term I(k)0 (t) and we show that if C0 is taken sufficiently large then,
for t ≤ τk we have that

(55) I(k)0 (t) − C0 (∂σW )(ξ (t),µ ,ρk(t))g(|µ|+ρk(t))W̄ (ξ (t))≤ 0.

The second term on the right hand side of (54) can be estimated, by using (48) and (48),
to get to

∣∣∣ f (x+1−µ,ρk(t))− f (x−1−µ ,ρk(t))
∣∣∣= ∣∣∣∫ 1

−1
(∂x f )(x−µ +α,ρk(t))dα

∣∣∣
≤
∫ 1

−1

∣∣∣(∂x f )(x−µ +α,ρk(t))dα
∣∣∣

≤
∫ 1

−1
(∂σ f )(x−µ +α,ρk(t))dα

≤ 2 sup
[x−µ−1,x−µ+1]

{
∂σ f (·,ρk(t))

}
≤ 2e2λ ∂σ f (x−µ,ρk(t))

(56)

which gives us that

∑
x∈Z

(
f (x+1−µ,ρk(t))− f (x−1−µ ,ρk(t))

)
ξx(t)≤C ∑

x∈Z
∂σ f (x−µ,ρk(t))ξx(t)

≤C(∂σW )(ξ (t),µ ,ρk(t)).

Now, notice that for any x ∈ Z and for all ξ ∈ (0,∞)Z we have that

W̄ (ξ )≥ Ŵ (ξ )≥ W (ξ ,x,g(x))
g(x)

.

On the other hand, by (51) and since for all x > 0 it holds that log(x)≤ 1+ x, then we have
that W (ξ ,x,g(x))≥ c1eλ E(ξ ,x,g(x))≥ c1e−λ ξx+1. Then, we conclude that there exists a
constant C such that for all x ∈ Z and ξ ∈ (0,∞)Z,

(57) ξx+1 ≤Cg(x)W̄ (ξ ).

To estimate the first term on the right hand side of (54) we use the previous estimate,
(48) and a similar argument as done in (56). It follows that∣∣∣∑

x∈Z
( f (x−µ ,ρk(t))− f (x+1−µ,ρk(t)))ξx(t)ξx+1(t)

∣∣∣
≤CW̄ (ξ (t))g(|µ|+ρk(t)) ∑

x∈Z
∂σ f (x−µ,ρk(t))ξx(t)

≤CW̄ (ξ (t))g(|µ|+ρk(t))(∂σW )(ξ (t),µ ,ρk(t)).
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Then, (55) follows.
The term dI(k)1 can be written as

dI(k)1 = ∑
x∈Z

f (x−µ ,ρk)
{

2∇((ξx −ξx−1)dNx−1,x)−∇((logξx − logξx−1)dNx−1,x)
}

=− ∑
x∈Z

( f (x+1−µ ,ρk)− f (x−µ,ρk)){2∇ξx −∇ logξx}dNx,x+1

=− ∑
x∈Z

( f (x+1−µ ,ρk)− f (x−µ,ρk)){2∇ξx −∇ logξx}(dNx,x+1 − γdt)

− γ ∑
x∈Z

( f (x+1−µ ,ρk)− f (x−µ ,ρk)){2∇ξx −∇ logξx}dt.

Since the compensated Poisson processes Nx,x+1(t)−γt are orthogonal martingales with
quadratic variation γ2t, then

dM(k)
µ =−∑

x∈Z
( f (x+1−µ,ρk)− f (x−µ,ρk))

{
2∇ξx−∇ logξx

}
(dNx,x+1 − γdt)

defines a martingale with a quadratic variation equal to

d⟨M(k)
µ ⟩t = γ2 ∑

x∈Z
( f (x+1−µ,ρk)− f (x−µ ,ρk))

2
{

2∇ξx −∇ logξx

}2
dt.

Using a similar argument to the one in (56), together with the fact that for all x,y ∈ Z
such that |x|, |y| ≤ C it holds that |x− y|2 ≤ 2C|x− y|, the boundedness of the function f ,
(48), (48), (48) and (57), one has that there exists a constant C such that

d⟨M(k)
µ ⟩t ≤C g(|µ |+ρk(t)) W̄ (ξ (t)) ∂σW (ξ (t),µ,ρk(t))dt.

Similarly we obtain that∣∣∣∣∣∑x∈Z [ f (x+1−µ ,ρk(t))− f (x−µ ,ρk(t))]{2∇ξx(t)−∇ logξx(t)}

∣∣∣∣∣
≤C ∂σW (ξ (t),µ ,ρk(t)).

Thus, if the constant C0 is chosen sufficiently large, we have

sup
t≥0

{
W (ξ (t ∧ τk),µ,ρk(t ∧ τk))

}
≤W (ξ (0),µ,kg(µ))+ sup

t≥0

{
N(µ ,k, t)

}
where N(µ,k, t) =M(k)

µ (t∧τk)− 1
2 ⟨M

(k)
µ ⟩t∧τk . Observe that exp(M(k)

µ (t∧τk)− 1
2 ⟨M

(k)
µ ⟩t∧τk)

is a martingale with expectation equal to 1. By the exponential supermartingale inequality,
we have that

P
(

sup
t≥0

{
N(µ ,k, t)> u

})
≤ e−u.

Thus we proved that for each k ≥ 1, µ ∈ Z and u > 0,

(58) sup
t≥0

{
W (ξ (t ∧ τk),µ,ρk(t ∧ τk))

}
≤W (ξ (0),µ ,kg(µ))+u

with a probability greater than 1− e−u. Applying (58) for each µ ∈ Z and k ≥ 1 with u
replaced by u+Akg(µ) where A ≥ 1 is sufficiently large to have ∑k≥1 ∑µ∈Z e−Akg(µ) ≤ 1,
we obtain

sup
t≥0

{
W (ξ (t ∧ τk),µ ,ρk(t ∧ τk))

}
≤W (ξ (0),µ ,kg(µ))+Akg(µ)+u

≤ kg(µ)W̄ (ξ (0))+Akg(µ)+u
(59)
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with a probability greater than 1− e−u uniformly in k and µ .
Define now k := kt , t ≥ 0 as the smallest integer k ≥ 1 for which ρk(t) > g(µ); then

τk > t and ρk(t) ≤ 2g(µ) as ρk−1(t) ≤ g(µ); thus choosing k = kt in (59) and using that
W (ξ ,µ,σ) is increasing in σ (since ∂σ f ≥ 0 by the conditions imposed on φ), we get

W (ξ (t),µ,g(µ))
g(µ)

≤W (ξ (t),µ,ρk(t))
g(µ)

≤kW̄ (ξ (0))+Ak+
u

g(µ)
≤ kW̄ (ξ (0))+Ak+u,

where in the last inequality we used the fact that g(x)≥ 1 for all x ∈ R. Taking the supre-
mum over µ and using Lemma A.1, we obtain

W̄ (ξ (t))≤CktW̄ (ξ (0))+u

for each t ≥ 0 with probability at least 1− e−u. On the other hand,

2g(µ)≥ ktg(µ)−C0

∫ t

0
g(|µ |+ |ρk(s)|)Z′(s)ds

whence

kt ≤ 2+C0

∫ t

0

g(|µ|+ |ρk(s)|)
g(µ)

Z′(s)ds.

Since ρk(s)≤ ktg(µ) for any s ∈ [0, t] and g is increasing, we have that g(|µ |+ |ρk(s)|)≤
g(µ + ktg(µ)). On the other hand for x ≥ 2, g(x) ≤ x together with the fact that for x,y ∈
R g(|x||y|) ≤ g(|x|)g(|y|) and since g(1+ x) ≤ 1+ g(x) for x ≥ 1, we obtain that g(µ +
ktg(µ))≤ g(µ)(1+g(kt)). As a consequence we obtain that

(60) kt ≤ 2+C0Z(t)(1+g(kt)).

Since for all x ≥ 1 we have that g(x)≤ 1+2
√
|x|, then

kt ≤ 2+C0Z(t)(2+2
√

kt).

Finally, it follows that
√

kt ≤ 2+4C0Z(t). Then, since g is increasing and by plugging the
previous inequality in (60), we obtain that

kt ≤ 2+C0Z(t)(1+g((2+4C0Z(t))2)).

Recalling that Z′(t) = W̄ (ξ (t)) we obtained that there exists a constant M > 0 depending
only on λ such that for any w ≥ 1 and any initial condition ξ (0) satisfying W̄ (ξ (0))≤ w,

P
[

sup
t≥0

{
M−1Z′(t)−w(1+Z(t)g(Z(t)))

}
≤ u
]
≥ 1− e−u.

The a priori bound follows from this last inequality (see [14], Proposition 1). �
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