874 research outputs found

    The iodine-plutonium-xenon age of the Moon-Earth system revisited

    Full text link
    From iodine-plutonium-xenon isotope systematics, we re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radioactivites (129I, T1/2 = 15.6 Ma, and 244Pu, T1/2 = 80 Ma) have produced radiogenic 129Xe and fissiogenic 131-136Xe, respectively, within the Earth, which related isotope fingerprints are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archean eon. Here we build a model that takes into account these results. Correction for Xe loss permits to compute new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The minimum Xe formation interval for the Earth- atmosphere is 40 (-10+20) Ma after start of solar system formation, which may also date the Moon-forming impact.Comment: 27 pages, 3 figures, 2 table

    Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus

    Full text link
    The composition of an atmosphere has integrated the geological history of the entire planetary body. However, the long-term evolutions of the atmospheres of the terrestrial planets are not well documented. For Earth, there were until recently only few direct records of atmosphere's composition in the distant past, and insights came mainly from geochemical or physical proxies and/or from atmospheric models pushed back in time. Here we review innovative approaches on new terrestrial samples that led to the determination of the elemental and isotopic compositions of key geochemical tracers, namely noble gases and nitrogen. Such approaches allowed one to investigate the atmosphere's evolution through geological period of time, and to set stringent constraints on the past atmospheric pressure and on the salinity of the Archean oceans. For Mars, we review the current state of knowledge obtained from analyses of Martian meteorites, and from the direct measurements of the composition of the present-day atmosphere by rovers and spacecrafts. Based on these measurements, we explore divergent models of the Martian and Terrestrial atmospheric evolutions. For Venus, only little is known, evidencing the critical need for dedicated missions

    Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    Full text link
    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan s atmosphere and in the protosolar nebula, respectively. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 permil relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among solar system objects and reservoirs. Extreme N isotope signatures in the solar system are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan s atmosphere. We also suggest that the low delta15N values of Archaean organic matter are partly the result of abiotic synthesis of organics that occurred at that time

    Origin and significance of cosmogenic signatures in vesicles of lunar basalt 15016

    Get PDF
    Lunar basalt 15016 (~3.3 Ga) is among the most vesicular (50% by volume) basalts recovered by the Apollo missions. We investigated the possible occurrence of indigenous lunar nitrogen and noble gases trapped in vesicles within basalt 15016, by crushing several cm‐sized chips. Matrix/mineral gases were also extracted from crush residues by fusion with a CO_2 laser. No magmatic/primordial component could be identified; all isotope compositions, including those of vesicles, pointed to a cosmogenic origin. We found that vesicles contained ~0.2%, ~0.02%, ~0.002%, and ~0.02% of the total amount of cosmogenic ^(21)Ne, ^(38)Ar, ^(83)Kr, and ^(126)Xe, respectively, produced over the basalt's 300 Myr of exposure. Diffusion/recoil of cosmogenic isotopes from the basaltic matrix/minerals to intergrain joints and vesicles is discussed. The enhanced proportion of cosmogenic Xe isotopes relative to Kr detected in vesicles could be the result of kinetic fractionation, through which preferential retention of Xe isotopes over Kr within vesicles might have occurred during diffusion from the vesicle volume to the outer space through microleaks. This study suggests that cosmogenic loss, known to be significant for ^3He and ^(21)Ne, and to a lesser extent for ^(36)Ar (Signer et al. 1977), also occurs to a negligible extent for the heaviest noble gases Kr and Xe

    Primordial Origins of Earth's Carbon

    No full text
    International audienceIt is commonly assumed that the building blocks of the terrestrial planets were derived froma cosmochemical reservoir that is best represented by chondrites, the so-called chondritic Earthmodel. This view is possibly a good approximation for refractory elements (although it hasbeen recently questioned; e.g., Caro et al. 2008), but for volatile elements, other cosmochemicalreservoirs might have contributed to Earth, such as the solar nebula gas and/or cometary matter(Owen et al. 1992; Dauphas 2003; Pepin 2006). Hence, in order to get insights into the originof the carbon in Earth, it is necessary to compare: (i) the elemental abundances and isotopiccompositions of not only carbon, but also other volatile elements in potential cosmochemical“ancestors,” and (ii) the ancestral compositions with those of terrestrial volatiles. This approachis the only one that has the potential for understanding the origin of the carbon in Earth butit has several intrinsic limitations. First, the terrestrial carbon budget is not well known, and,for the deep reservoir(s) such as the core and the lower mantle, is highly model-dependent(Dasgupta 2013; Wood et al. 2013). Second, the cosmochemical reservoir(s) that contributedvolatile elements to proto-Earth may not exist anymore because planet formation might havecompletely exhausted them (most of the mass present in the inner solar system is now in Venusand Earth). Third, planetary formation processes (accretion, differentiation, early evolutionof the atmospheres) might have drastically modified the original elemental and isotopiccompositions of the volatile elements in Earth. Despite these limitations, robust constraints onthe origin(s) of the carbon in Earth can be deduced from comparative planetology of volatileelements, which is the focus of this chapter

    Volatiles in protoplanetary disks

    Full text link
    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped, snow lines are directly seen and quantified, and distinct chemical regions within protoplanetary disks are being identified, characterized and modeled. Theoretical processes invoked to explain the solar system record are now being observationally constrained in protoplanetary disks, including transport of icy bodies and concentration of bulk condensibles. The balance between chemical reset - processing of inner disk material strong enough to destroy its memory of past chemistry, and inheritance - the chemically gentle accretion of pristine material from the interstellar medium in the outer disk, ultimately determines the final composition of pre-planetary matter. This chapter focuses on making the first steps toward understanding whether the planet formation processes that led to our solar system are universal.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Mercury (Hg) in meteorites: variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    Full text link
    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg ({\delta}202Hg = ~-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ~2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.Comment: 43 Pages, 9 Figures. Accepted for publication in Geochimica et Cosmochimica Act

    Salinity of the Archaean oceans from analysis of fluid inclusions in quartz

    Get PDF
    Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon–argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5–3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless ^(40)Ar. The low Cl–K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth

    Nitrogen Isotopic Composition and Density of the Archean Atmosphere

    Get PDF
    Understanding the atmosphere's composition during the Archean eon is a fundamental issue to unravel ancient environmental conditions. We show from the analysis of nitrogen and argon isotopes in fluid inclusions trapped in 3.0-3.5 Ga hydrothermal quartz that the PN2 of the Archean atmosphere was lower than 1.1 bar, possibly as low as 0.5 bar, and had a nitrogen isotopic composition comparable to the present-day one. These results imply that dinitrogen did not play a significant role in the thermal budget of the ancient Earth and that the Archean PCO2 was probably lower than 0.7 bar
    corecore