238 research outputs found

    Energy and Energy Literacy in Canada: A Survey of Business and Policy Leadership

    Get PDF
    Lots of people have opinions about Canadian energy, how we use and export it, its costs and its impacts on the environment. In the end, however, it is leaders in business and policy circles whose opinions can have a greater impact on influencing how the rest of us think about energy, and ultimately, how our national energy picture eventually unfolds. Remarkably, however, a survey of leaders in business and policy-making across the country finds that their knowledge about Canadian energy systems is not that much deeper or different than the Canadian public at large. Their opinions about how we should use, conserve and export energy are also strikingly similar. Anyone presuming that leaders in business and policy have a firm understanding of how Canadians get their energy might be startled to discover that, in Ontario, Alberta, the Atlantic region and Saskatchewan, a substantial fraction of these “elite” survey respondents incorrectly identify the primary resource used for energy in their province. Nor are business and policy leaders the ardent free traders some of us might expect when it comes to energy exports and imports. While an overwhelming majority (89 per cent) of survey respondents considered it important or at least somewhat important to decrease Canada’s reliance on the U.S. market for our exports, 56 per cent of those surveyed also advocated for more Canadian energy independence, even if it meant reduced revenue for the Canadian economy. Not only that, but they largely believed that eliminating energy imports and relying exclusively on Canadian sources would somehow result in an overall drop in energy costs. Furthermore, a strong majority of policy-makers and business leaders had a general agreement that it was worth bearing higher energy costs in the future if it resulted in better environmental quality. Additionally, when it came to evaluating who they could trust for reliable information about energy, business and policy-making elites proved just about as skeptical as the general public when it came to companies, industry groups and government officials, ranking all three fairly weakly on trustworthiness. They saw academics and economic experts as slightly more trustable sources for information, though even those sources had limits. And while environmental and community groups and activists were given generally middling scores for trustworthiness, business leaders, interestingly enough, actually ranked these activist groups as just a bit more reliable than did policy-makers. Finally, a clear preference in both groups was revealed for more planning and systematically adapting to changing energy markets and environmental conditions through the development of some form of public policy energy strategies

    Quantification of the chemical reactivity of molten nitrate salts with heat treatable aluminum alloys

    Get PDF
    This work explores the conditions for safe heat treatment of aluminum alloys containing lithium and magnesium in molten sodium nitrate (NaNO3) bath furnaces, and conditions where industrial accidents may occur. Using calorimetry coupled to classical thermodynamics, the strength of classical thermodynamics when analyzing thermal curves was demonstrated through a series of small-scale thermal analyses of various aluminum alloys in contact with sodium nitrate. This system was selected to illustrate reactions that may lead to severe and violent heat effect phenomena. Using idealized binary alloys, severe oxidation of magnesium- and lithium-rich aluminum alloy samples were shown to occur near 500 °C, a temperature range dangerously close to the operating temperature of solution heat treatment furnaces in manufacturing processes of heat treatable aluminum alloy sheets used in the aerospace industry. Commercial aluminum alloys AW257, 2198, 2024, and 1050 were also assessed with the same tools. The temperature that needed to be reached for these commercial aluminum alloys to react with molten sodium nitrate was significantly higher than the normal operating temperature of a conventional solution heat treatment furnace

    A Human-Curated Annotation of the Candida albicans Genome

    Get PDF
    Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle θ\theta of about 11^\circ is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore