55 research outputs found

    The CXCL12Îł Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    Get PDF
    The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells

    Modeling the allosteric modulation of CCR5 function by Maraviroc

    No full text
    International audienceMaraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC che- mokine receptor 4, their contribution to the under- standing of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions

    CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling.

    No full text
    International audienceThe stromal cell-derived factor-1/CXCL12 chemokine engages the CXCR4 and CXCR7 receptors and regulates homeostatic and pathologic processes, including organogenesis, leukocyte homeostasis, and tumorigenesis. Both receptors are widely expressed in mammalian cells, but how they cooperate to respond to CXCL12 is not well understood. Here, we show that CXCR7 per se does not trigger G(alphai) protein-dependent signaling, although energy transfer assays indicate that it constitutively interacts with G(alphai) proteins and undergoes CXCL12-mediated conformational changes. Moreover, when CXCR4 and CXCR7 are coexpressed, we show that receptor heterodimers form as efficiently as receptor homodimers, thus opening the possibility that CXCR4/CXCR7 heterodimer formation has consequences on CXCL12-mediated signals. Indeed, expression of CXCR7 induces conformational rearrangements within preassembled CXCR4/G(alphai) protein complexes and impairs CXCR4-promoted G(alphai)-protein activation and calcium responses. Varying CXCR7 expression levels and blocking CXCL12/CXCR7 interactions in primary T cells suggest that CXCR4/CXCR7 heterodimers form in primary lymphocytes and regulate CXCL12-promoted chemotaxis. Taken together, these results identify CXCR4/CXCR7 heterodimers as distinct functional units with novel properties, which can contribute to the functional plasticity of CXCL12

    Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor

    No full text
    International audienceThe chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses

    A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity

    Get PDF
    BACKGROUND: Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. RESULTS: Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. CONCLUSION: These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients.This work was supported by Agence Nationale de la Recherche sur le SIDA (ANRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (Grant ANR-10- LABEX-62-IBEID), Instituto de Salud Carlos III (Intrasalud PI12/0056), the Spanish Ministry of Health (EC11-175) and Red de investigación en SIDA RD12/0017/0015 as part of the Plan Nacional R + D + I and cofinanced by ISCIII- Subdirección General de Evaluación and Fondo Europeo de Desarrollo Regional (FEDER).S

    Protein overexpression can induce the elongation of cell membrane nanodomains

    No full text
    In cell membranes, proteins and lipids are organized into submicrometric nanodomains of varying sizes, shapes, and compositions, performing specific functions. Despite their biological importance, the detailed morphology of these nanodomains remains unknown. Not only can they hardly be observed by conventional microscopy due to their small size, but there is no full consensus on the theoretical models to describe their structuring and their shapes. Here, we use a combination of analytical calculations and Monte Carlo simulations based upon a model coupling membrane composition and shape to show that increasing protein concentration leads to an elongation of membrane nanodomains. The results are corroborated by single-particle tracking measurements on HIV receptors, whose level of expression in the membrane of specifically designed living cells can be tuned. These findings highlight that protein abundance can modulate nanodomain shape and potentially their biological function. Beyond biomembranes, this mesopatterning mechanism is of relevance in several soft-matter systems because it relies on generic physical arguments
    • …
    corecore