32 research outputs found

    Distinct and Specific Role of NlpC/P60 Endopeptidases LytA and LytB in Cell Elongation and Division of Lactobacillus plantarum

    Get PDF
    Peptidoglycan (PG) is an essential lattice of the bacterial cell wall that needs to be continuously remodeled to allow growth. This task is ensured by the concerted action of PG synthases that insert new material in the pre-existing structure and PG hydrolases (PGHs) that cleave the PG meshwork at critical sites for its processing. Contrasting with Bacillus subtilis that contains more than 35 PGHs, Lactobacillus plantarum is a non-sporulating rod-shaped bacterium that is predicted to possess a minimal set of 12 PGHs. Their role in morphogenesis and cell cycle remains mostly unexplored, except for the involvement of the glucosaminidase Acm2 in cell separation and the NlpC/P60 D, L-endopeptidase LytA in cell shape maintenance. Besides LytA, L. plantarum encodes three additional NlpC/P60 endopeptidases (i.e., LytB, LytC and LytD). The in silico analysis of these four endopeptidases suggests that they could have redundant functions based on their modular organization, forming two pairs of paralogous enzymes. In this work, we investigate the role of each Lyt endopeptidase in cell morphogenesis in order to evaluate their distinct or redundant functions, and eventually their synthetic lethality. We show that the paralogous LytC and LytD enzymes are not required for cell shape maintenance, which may indicate an accessory role such as in PG recycling. In contrast, LytA and LytB appear to be key players of the cell cycle. We show here that LytA is required for cell elongation while LytB is involved in the spatio-temporal regulation of cell division. In addition, both PGHs are involved in the proper positioning of the division site. The absence of LytA activity is responsible for the asymmetrical positioning of septa in round cells while the lack of LytB results in a lateral misplacement of division planes in rod-shaped cells. Finally, we show that the co-inactivation of LytA and LytB is synthetically affecting cell growth, which confirms the key roles played by both enzymes in PG remodeling during the cell cycle of L. plantarum. Based on the large distribution of NlpC/P60 endopeptidases in low-GC Gram-positive bacteria, these enzymes are attractive targets for the discovery of novel antimicrobial compounds

    A Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity

    Get PDF
    Background: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. Methodology: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a,400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPSrecognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. Significance: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last step

    Vampires in the village Žrnovo on the island of Korčula: following an archival document from the 18th century

    Get PDF
    Središnja tema rada usmjerena je na raščlambu spisa pohranjenog u Državnom arhivu u Mlecima (fond: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) koji se odnosi na događaj iz 1748. godine u korčulanskom selu Žrnovo, kada su mještani – vjerujući da su se pojavili vampiri – oskvrnuli nekoliko mjesnih grobova. U radu se podrobno iznose osnovni podaci iz spisa te rečeni događaj analizira u širem društvenom kontekstu i prate se lokalna vjerovanja.The main interest of this essay is the analysis of the document from the State Archive in Venice (file: Capi del Consiglio de’ Dieci: Lettere di Rettori e di altre cariche) which is connected with the episode from 1748 when the inhabitants of the village Žrnove on the island of Korčula in Croatia opened tombs on the local cemetery in the fear of the vampires treating. This essay try to show some social circumstances connected with this event as well as a local vernacular tradition concerning superstitions

    Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases

    No full text

    Insertion mutagenesis as a tool in the modification of protein function. Extended substrate specificity conferred by pentapeptide insertions in the omega-loop of TEM-1 beta-lactamase

    No full text
    The TEM-1 beta-lactamase enzyme efficiently hydrolyzes beta-lactam antibiotics such as ampicillin but cleaves third generation cephalosporin antibiotics poorly. Variant beta-lactamases that conferred elevated levels of resistance to the cephalosporin ceftazidime were identified in a set of beta-lactamase derivatives previously generated by pentapeptide scanning mutagenesis in which a variable 5-amino acid cassette was introduced randomly in the target protein. This mutagenesis procedure was also modified to allow the direct selection of variant beta-lactamases with pentapeptide insertions that conferred extended substrate specificities. All insertions associated with enhanced resistance to ceftazidime were targetted to the 19-amino acid Omega-loop region, which forms part of the catalytic pocket of the beta-lactamase enzyme. However, pentapeptide insertions in the C- and N-terminal halves of this region had different effects on the ability of the enzyme to hydrolyze ampicillin in vivo. Larger insertions that increased the length of the Omega-loop by up to 2-fold also retained catalytic activity toward ampicillin and/or ceftazidime in vivo. In accord with previous substitution mutation studies, these results emphasize the extreme flexibility of the Omega-loop with regards the primary structure requirements for ceftazidime hydrolysis by beta-lactamase. The potential of pentapeptide scanning mutagenesis in mimicking evolution events that result from the insertion and excision of transposons in nature is discussed
    corecore