4,791 research outputs found

    The energy decay in self-preserving isotropic turbulence revisited

    Get PDF
    The assumption of self-preservation allows for an analytical determination of the energy decay in isotropic turbulence. Here, the self-preserving isotropic decay problem is analyzed, yielding a more complete picture of self-serving isotropic turbulence. It is proven rigorously that complete self-serving isotropic turbulence admits two general types of asymptotic solutions: one where the turbulent kinetic energy K approximately t (exp -1) and one where K approximately t (sup alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one-point equations, it is demonstrated that the K approximately t (exp -1) and where K approximately t (sup -alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one point equations, it is demonstrated that the K approximately t (exp -1) power law decay is the asymptotically consistent high Reynolds number solution; the K approximately 1 (sup - alpha) decay law is only achieved in the limit as t yields infinity and the turbulence Reynolds number vanishes. Arguments are provided which indicate that a K approximately t (exp -1) power law decay is the asymptotic state towards which a complete self-preseving isotropic turbulence is driven at high Reynolds numbers in order to resolve the imbalance between vortex stretching and viscous diffusion

    Bounded energy states in homogeneous turbulent shear flow: An alternative view

    Get PDF
    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination

    Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction pipeline

    Full text link
    In this paper, we show how absolute orientation measurements provided by low-cost but high-fidelity IMU sensors can be integrated into the KinectFusion pipeline. We show that integration improves both runtime, robustness and quality of the 3D reconstruction. In particular, we use this orientation data to seed and regularize the ICP registration technique. We also present a technique to filter the pairs of 3D matched points based on the distribution of their distances. This filter is implemented efficiently on the GPU. Estimating the distribution of the distances helps control the number of iterations necessary for the convergence of the ICP algorithm. Finally, we show experimental results that highlight improvements in robustness, a speed-up of almost 12%, and a gain in tracking quality of 53% for the ATE metric on the Freiburg benchmark.Comment: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues 201

    The B_s and D_s decay constants in 3 flavor lattice QCD

    Get PDF
    Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f_{B_s} and f_{D_s} that includes effects of one strange sea quark and two light sea quarks. The discretization errors of improved staggered fermion actions are small enough to simulate with 3 dynamical flavors on lattices with spacings around 0.1 fm using present computer resources. By shedding the quenched approximation and the associated lattice scale ambiguity, lattice QCD greatly increases its predictive power. NRQCD is used to simulate heavy quarks with masses between 1.5 m_c and m_b. We arrive at the following results: f_{B_s} = 260 \pm 7 \pm 26 \pm 8 \pm 5 MeV and f_{D_s} = 290 \pm 20 \pm 29 \pm 29 \pm 6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.Comment: 4 page

    Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Get PDF
    BACKGROUND: Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). RESULTS: Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. CONCLUSION: Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed

    Light Hadron Spectrum and Quark Masses from Quenched Lattice QCD

    Get PDF
    We present details of simulations for the light hadron spectrum in quenched QCD carried out on the CP-PACS parallel computer. Simulations are made with the Wilson quark action and the plaquette gauge action on 32^3x56 - 64^3x112 lattices at four lattice spacings (a \approx 0.1-0.05 fm) and the spatial extent of 3 fm. Hadronic observables are calculated at five quark masses (m_{PS}/m_V \approx 0.75 - 0.4), assuming the u and d quarks being degenerate but treating the s quark separately. We find that the presence of quenched chiral singularities is supported from an analysis of the pseudoscalar meson data. We take m_\pi, m_\rho and m_K (or m_\phi) as input. After chiral and continuum extrapolations, the agreement of the calculated mass spectrum with experiment is at a 10% level. In comparison with the statistical accuracy of 1-3% and systematic errors of at most 1.7% we have achieved, this demonstrates a failure of the quenched approximation for the hadron spectrum: the meson hyperfine splitting is too small, and the octet masses and the decuplet mass splittings are both smaller than experiment. Light quark masses are calculated using two definitions: the conventional one and the one based on the axial-vector Ward identity. The two results converge toward the continuum limit, yielding m_{ud}=4.29(14)^{+0.51}_{-0.79} MeV. The s quark mass depends on the strange hadron mass chosen for input: m_s = 113.8(2.3)^{+5.8}_{-2.9} MeV from m_K and m_s = 142.3(5.8)^{+22.0}_{-0} MeV from m_\phi, indicating again a failure of the quenched approximation. We obtain \Lambda_{\bar{MS}}^{(0)}= 219.5(5.4) MeV. An O(10%) deviation from experiment is observed in the pseudoscalar meson decay constants.Comment: 60 pages, 49 figure

    Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review

    Get PDF
    Article purchased; Published online: 13 July 2017Food security entails having sufficient, safe, and nutritious food to meet dietary needs. The need to optimise nitrogen (N) use for nutrition security while minimising environmental risks in sub-Saharan Africa (SSA) is overdue. Challenges related to managing N use in SSA can be associated with both insufficient use and excessive loss, and thus the continent must address the ‘too little’ and ‘too much’ paradox. Too little N is used in food production (80% of countries have N deficiencies), which has led to chronic food insecurity and malnutrition. Conversely, too much N load in water bodies due mainly to soil erosion, leaching, limited N recovery from wastewater, and atmospheric deposition contributes to eutrophication (152 Gg N year–1 in Lake Victoria, East Africa). Limited research has been conducted to improve N use for food production and adoption remains low, mainly because farming is generally practiced by resource-poor smallholder farmers. In addition, little has been done to effectively address the ‘too much’ issues, as a consequence of limited research capacity. This research gap must be addressed, and supportive policies operationalised, to maximise N benefits, while also minimising pollution. Innovation platforms involving key stakeholders are required to address N use efficiency along the food supply chain in SSA, as well as other world regions with similar challenges

    Uniformity in the Wiener-Wintner theorem for nilsequences

    Full text link
    We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.Comment: v3: 18 p., proof that the cube construction produces compact homogeneous spaces added, measurability issues in the proof of Theorem 1.5 addressed. We thank the anonymous referees for pointing out these gaps in v
    • …
    corecore