6 research outputs found

    Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth

    No full text
    In view of the known sensitivity of the developing central nervous system to pollutants, we sought to assess the effects of exposure to uranium (U) — a heavy metal naturally present in the environment — on the behavior of young rats and the impact of oxidative stress on their hippocampus. Pups drank U (in the form of uranyl nitrate) at doses of 10 or 40 mg.L-1 for 10 weeks from birth. Control rats drank mineral water. Locomotor activity in an open field and practice effects on a rotarod device decreased in rats exposed to 10 mg.L-1 (respectively, -19.4% and -51.4%) or 40 mg.L-1 (respectively, -19.3% and -55.9%) in compared with control rats. Anxiety (+37%) and depressive-like behavior (-50.8%) were altered by U exposure only at 40 mg.L-1. Lipid peroxidation (+35%) and protein carbonyl concentration (+137%) increased significantly after exposure to U at 40 mg.L-1. A significant increase in superoxide dismutase (SOD, +122.5%) and glutathione peroxidase (GPx, +13.6%) activities was also observed in the hippocampus of rats exposed to 40 mg.L-1. These results demonstrate that exposure to U since birth alters some behaviors and modifies antioxidant status. © 2015, Japanese Society of Toxicology. All rights reserved

    Changes in sleep-wake cycle after chronic exposure to uranium in rats

    No full text
    International audienceUranium is a heavy metal known to induce toxicity in kidneys. It is also known to enter the central nervous system, thus inducing neurophysiological effects, after exposure to relatively high concentrations. The effect of chronic uranium exposure (40 mg l(-1) in drinking water, for 90 days) on electroencephalographic architecture has been studied on freely moving rats using a telemetry technique. The main effects of uranium on the sleep-wake cycle were an increase in rapid eye movement sleep (REM-sleep) and theta band power during the light period, as early as Day 30 after exposure commenced. The most probable explanation for these effects is that uranium directly affects the brain. This increase in REM-sleep was previously described in human depression or models of chronically stressed rats and it may be assimilated with some protective or compensatory mechanisms

    Cerebral cortex and hippocampus respond differently after post-natal exposure to uranium

    No full text
    The central nervous system (CNS) is known to be sensitive to pollutants during its development. Uranium (U) is a heavy metal that occurs naturally in the environment as a component of the earth's crust, and populations may therefore be chronically exposed to U through drinking water and food. Previous studies have shown that the CNS is a target of U in rats exposed in adulthood. We assessed the effects of U on behavior and cholinergic system of rats exposed from birth for 10 weeks at 10 mg.L-1 or 40 mg.L-1. For behavioral analysis, the sleep/wake cycle (recorded by telemetry), the object recognition memory and the spatial working memory (Y-maze) were evaluated. Acetylcholine (ACh) and acetylcholinesterase (AChE) levels were evaluated in the entorhinal cortex and hippocampus. At 40 mg.L-1, U exposure impaired object recognition memory (-20%), but neither spatial working memory nor the sleep/wake cycle was impaired. A significant decrease was observed in both the ACh concentration (-14%) and AChE activity (-14%) in the entorhinal cortex, but not in the hippocampus. Any significant effect on behaviour and cholinergic system was observed at 10 mg U.L-1. These results demonstrate that early exposure to U during postnatal life induces a structure cerebral-dependant cholinergic response and modifies such memory process in rats. This exposure to U early in life could have potential delayed effects in adulthood

    Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure.

    No full text
    International audienceUranium is a heavy metal naturally present in the environment that may be chronically ingested by the population. Previous studies have shown that uranium is present in the brain and alters behaviour, notably locomotor activity, sensorimotor ability, sleep/wake cycle and the memory process, but also metabolism of neurotransmitters. The cholinergic system mediates many cognitive systems, including those disturbed after chronic exposure to uranium i.e., spatial memory, sleep/wake cycle and locomotor activity. The objective of this study was to assess whether these disorders follow uranium-induced alteration of the cholinergic system. In comparison with 40 control rats, 40 rats drank 40 mg/L uranyl nitrate for 1.5 or 9 months. Cortex and hippocampus were removed and gene expression and protein level were analysed to determine potential changes in cholinergic receptors and acetylcholine levels. The expression of genes showed various alterations in the two brain areas after short- and long-term exposure. Nevertheless, protein levels of the choline acetyltransferase enzyme (ChAT), the vesicular transporter of acetylcholine (VAChT) and the nicotinic receptor beta2 sub-unit (nAChRbeta2) were unmodified in all cases of the experiment and muscarinic receptor type 1 (m1AChR) protein level was disturbed only after 9 months of exposure in the cortex (-30%). Acetylcholine levels were unchanged in the hippocampus after 1.5 and 9 months, but were decreased in the cortex after 1.5 months only (-22%). Acetylcholinesterase (AChE) activity was also unchanged in the hippocampus but decreased in the cortex after 1.5 and 9 months (-16% and -18%, respectively). Taken together, these data indicate that the cholinergic system is a target of uranium exposure in a structure-dependent and time-dependent manner. These cholinergic alterations could participate in behavioural impairments

    Inhalation of uranium nanoparticles: respiratory tract deposition and translocation to secondary target organs in rats

    No full text
    Uranium nanoparticles (<100 nm) can be released into the atmosphere during industrial stages of the nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account. In order to address this issue, the absorption rate of inhaled uranium nanoparticles needs to be characterised experimentally. For this purpose, rats were exposed to an aerosol containing 10⁷ particles of uranium per cmÂł (CMD=38 nm) for 1h in a nose-only inhalation exposure system. Uranium concentrations deposited in the respiratory tract, blood, brain, skeleton and kidneys were determined by ICP-MS. Twenty-seven percent of the inhaled mass of uranium nanoparticles was deposited in the respiratory tract. One-fifth of UO₂ nanoparticles were rapidly cleared from lung (T(Âœ)=2.4 h) and translocated to extrathoracic organs. However, the majority of the particles were cleared slowly (T(Âœ)=141.5 d). Future long-term experimental studies concerning uranium nanoparticles should focus on the potential lung toxicity of the large fraction of particles cleared slowly from the respiratory tract after inhalation exposure
    corecore