1,973 research outputs found
Topological phase transitions between chiral and helical spin textures in a lattice with spin-orbit coupling and a magnetic field
We consider the combined effects of large spin-orbit couplings and a
perpendicular magnetic field in a 2D honeycomb fermionic lattice. This system
provides an elegant setup to generate versatile spin textures propagating along
the edge of a sample. The spin-orbit coupling is shown to induce topological
phase transitions between a helical quantum spin Hall phase and a chiral
spin-imbalanced quantum Hall state. Besides, we find that the spin orientation
of a single topological edge state can be tuned by a Rashba spin-orbit
coupling, opening an interesting route towards quantum spin manipulation. We
discuss the possible realization of our results using cold atoms trapped in
optical lattices, where large synthetic magnetic fields and spin-orbit
couplings can be engineered and finely tuned. In particular, this system would
lead to the observation of a time-reversal-symmetry-broken quantum spin Hall
phase.Comment: 8 pages, 3 figures, Accepted in Europhys. Lett. (Dec 2011
Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point
We study the adiabatic dynamics of Majorana fermions across a quantum phase
transition. We show that the Kibble-Zurek scaling, which describes the density
of bulk defects produced during the critical point crossing, is not valid for
edge Majorana fermions. Therefore, the dynamics governing an edge state quench
is nonuniversal and depends on the topological features of the system. Besides,
we show that the localization of Majorana fermions is a necessary ingredient to
guaranty robustness against defect production.Comment: Submitted to the Special Issue on "Dynamics and Thermalization in
Isolated Quantum Many-Body Systems" in New Journal of Physics. Editors:M.
Cazalilla, M. Rigol. New references and some typos correcte
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
A systematic study of 2-quasiparticle bands of the proton-rich odd-odd nuclei
in the mass A ~ 70-80 region is performed using the projected shell model
approach. The study includes Br-, Rb-, and Y-isotopes with N = Z+2, and Z+4. We
describe the energy spectra and electromagnetic transition strengths in terms
of the configuration mixing of the angular-momentum projected
multi-quasiparticle states. Signature splitting and signature inversion in the
rotational bands are discussed and are shown to be well described. A
preliminary study of the odd-odd N = Z nucleus, 74Rb using the concept of
spontaneous symmetry breaking is also presented.Comment: 14 pages, 7 figures, final version accepted by Phys. Rev.
Photoemission study of the metal-insulator transition in VO_2/TiO_2(001) : Evidence for strong electron-electron and electron-phonon interaction
We have made a detailed temperature-dependent photoemission study of
VO_2/TiO_2(001) thin films, which show a metal-insulator transition at \sim 300
K. Clean surfaces were obtained by annealing the films in an oxygen atmosphere.
Spectral weight transfer between the coherent and incoherent parts accompanying
the metal-insulator transition was clearly observed. We also observed a
hysteretic behavior of the spectra for heating-cooling cycles. We have derived
the ``bulk'' spectrum of the metallic phase and found that it has a strong
incoherent part. The width of the coherent part is comparable to that given by
band-structure calculation in spite of its reduced spectral weight, indicating
that the momentum dependence of the self-energy is significant. This is
attributed to by ferromagnetic fluctuation arising from Hund's rule coupling
between different d orbitals as originally proposed by Zylbersztejn and Mott.
In the insulating phase, the width of the V 3d band shows strong temperature
dependence. We attribute this to electron-phonon interaction and have
reproduced it using the independent boson model with a very large coupling
constant.Comment: 7 pages, 7 figures, submitted to Phys. Rev.
Identifying topological edge states in 2D optical lattices using light scattering
We recently proposed in a Letter [Physical Review Letters 108 255303] a novel
scheme to detect topological edge states in an optical lattice, based on a
generalization of Bragg spectroscopy. The scope of the present article is to
provide a more detailed and pedagogical description of the system - the
Hofstadter optical lattice - and probing method. We first show the existence of
topological edge states, in an ultra-cold gas trapped in a 2D optical lattice
and subjected to a synthetic magnetic field. The remarkable robustness of the
edge states is verified for a variety of external confining potentials. Then,
we describe a specific laser probe, made from two lasers in Laguerre-Gaussian
modes, which captures unambiguous signatures of these edge states. In
particular, the resulting Bragg spectra provide the dispersion relation of the
edge states, establishing their chiral nature. In order to make the Bragg
signal experimentally detectable, we introduce a "shelving method", which
simultaneously transfers angular momentum and changes the internal atomic
state. This scheme allows to directly visualize the selected edge states on a
dark background, offering an instructive view on topological insulating phases,
not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP
Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic
Physics in Quantum Gases". Extended version of arXiv:1203.124
Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators
Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators1, 2, 3, 4, 5, 6, 7. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy8, 9, 10, 11 between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10−8λ03. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters12. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies.Peer ReviewedPostprint (author's final draft
Topological phase transitions in the non-Abelian honeycomb lattice
Ultracold Fermi gases trapped in honeycomb optical lattices provide an
intriguing scenario, where relativistic quantum electrodynamics can be tested.
Here, we generalize this system to non-Abelian quantum electrodynamics, where
massless Dirac fermions interact with effective non-Abelian gauge fields. We
show how in this setup a variety of topological phase transitions occur, which
arise due to massless fermion pair production events, as well as pair
annihilation events of two kinds: spontaneous and strongly-interacting induced.
Moreover, such phase transitions can be controlled and characterized in optical
lattice experiments.Comment: RevTex4 file, color figure
Statistics of Resonances and Delay Times in Random Media: Beyond Random Matrix Theory
We review recent developments on quantum scattering from mesoscopic systems.
Various spatial geometries whose closed analogs shows diffusive, localized or
critical behavior are considered. These are features that cannot be described
by the universal Random Matrix Theory results. Instead one has to go beyond
this approximation and incorporate them in a non-perturbative way. Here, we pay
particular emphasis to the traces of these non-universal characteristics, in
the distribution of the Wigner delay times and resonance widths. The former
quantity captures time dependent aspects of quantum scattering while the latter
is associated with the poles of the scattering matrix.Comment: 30 pages, 15 figures (submitted to Journal of Phys. A: Math. and
General, special issue on "Aspects of Quantum Chaotic Scattering"
Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues
Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the bhydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors
- …