60 research outputs found

    An integrative framework for tailoring virtual reality based motor rehabilitation after stroke

    Get PDF
    Stroke is a leading cause of life-lasting motor impairments, undermining the quality of life of stroke survivors and their families, and representing a major chal lenge for a world population that is ageing at a dramatic rate. Important technologi cal developments and neuroscientific discoveries have contributed to a better under standing of stroke recovery. Virtual Reality (VR) arises as a powerful tool because it allows merging contributions from engineering, human computer interaction, reha bilitation medicine and neuroscience to propose novel and more effective paradigms for motor rehabilitation. However, despite evidence of the benefits of these novel training paradigms, most of them still rely on the choice of particular technologi cal solutions tailored to specific subsets of patients. Here we present an integrative framework that utilizes concepts of human computer confluence to 1) enable VR neu rorehabilitation through interface technologies, making VR rehabilitation paradigms accessible to wide populations of patients, and 2) create VR training environments that allow the personalization of training to address the individual needs of stroke patients. The use of these features is demonstrated in pilot studies using VR training environments in different configurations: as an online low-cost version, with a myo electric robotic orthosis, and in a neurofeedback paradigm. Finally, we argue about the need of coupling VR approaches and neurocomputational modelling to further study stroke and its recovery process, aiding on the design of optimal rehabilitation programs tailored to the requirements of each user.info:eu-repo/semantics/publishedVersio

    The Neurorehabilitation Training Toolkit (NTT): A Novel Worldwide Accessible Motor Training Approach for At-Home Rehabilitation after Stroke

    Get PDF
    After stroke, enduring rehabilitation is required for maximum recovery, and ideally throughout life to prevent functional deterioration. Hence we developed a new concept for at-home low-cost motor rehabilitation, the NTT, an Internet-based interactive system for upper-limb rehabilitation. In this paper we present the NTT design concepts, its implementation and a proof of concept study with 10 healthy participants. The NTT brings together concepts of optimal learning, engagement, and storytelling to deliver a personalized training to its users. In this study we evaluate the feasibility of NTT as a tool capable of automatically assessing and adapting to its user. This is achieved by means of a psychometric study where we show that the NTT is able to assess movement kinematics—movement smoothness, range of motion, arm displacement and arm coordination—in healthy users. Subsequently, a modeling approach is presented to understand how the measured movement kinematics relate to training parameters, and how these can be modified to adapt the training to meet the needs of patients. Finally, an adaptive algorithm for the personalization of training considering motivational and performance aspects is proposed. In the next phase we will deploy and evaluate the NTT with stroke patients at their homes

    Virtual reality with customized positive stimuli in a cognitive-motor rehabilitation task: a feasibility study with subacute stroke patients with mild cognitive impairment

    Get PDF
    Virtual Reality applications for integrated cognitive and motor stroke rehabilitation show promise for providing more comprehensive rehabilitation programs. However, we are still missing evidence on its impact in comparison with standard rehabilitation, particularly in patients with cognitive impairment. Additionally, little is known on how specific stimuli in the virtual environment affect task performance and its consequence on recovery. Here we investigate the impact in stroke recovery of a virtual cognitive-motor task customized with positive stimuli, in comparison to standard rehabilitation. The positive stimuli were images based on individual preferences, and self-selected music (half of the sessions). 13 participants in the subacute stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Motor and cognitive outcomes were assessed at end of treatment (4-6 weeks) and at a 4-week followup. Both groups showed significant improvements over time in functional ability during task performance, but without changes in motor impairment. Cognitive outcomes were modest in both groups. For participants in the VR group, the score in the task was significantly higher in sessions with music. There were no statistical differences between groups at end of treatment and follow-up. The impact of VR therapy was lower than in similar studies with stroke patients without cognitive deficits. This study is a first step towards understanding how VR could be shaped to address the particular needs of this population.info:eu-repo/semantics/publishedVersio

    Brain–computer interfacing with interactive systems-Case study 2

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Eye gaze correlates of motor impairment in VR observation of motor actions

    Get PDF
    Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Methodologies, Models and A lgorithms for Patients Rehabilitation”. Objective: Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Methods: Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis.info:eu-repo/semantics/publishedVersio

    Physiologically attentive user interface for robot teleoperation: real time emotional state estimation and interface modification using physiology, facial expressions and eye movements

    Get PDF
    We developed a framework for Physiologically Attentive User Interfaces, to reduce the interaction gap between humans and machines in life critical robot teleoperations. Our system utilizes emotional state awareness capabilities of psychophysiology and classifies three emotional states (Resting, Stress, and Workload) by analysing physiological data along with facial expression and eye movement analysis. This emotional state estimation is then used to create a dynamic interface that updates in real time with respect to user’s emotional state. The results of a preliminary evaluation of the developed emotional state classifier for robot teleoperation are presented, along with its future possibilities are discussed.info:eu-repo/semantics/acceptedVersio

    Impact of game mode in multi-user serious games for upper limb rehabilitation: a within-person randomized trial on engagement and social involvement

    Get PDF
    Background: Serious games have been increasingly used for motor rehabilitation. However, it is not well known how different game features can be used to impact specific skills properly. Here, we study how the mode (competitive, co-active, collaborative) in which a multi-user game is presented impacts engagement and social involvement. Methods: We collected data from 20 pairs of community-dwelling older adults (71.5 ± 8.7 years) in a study following a within-persons design. The participants performed a two-player upper limb rehabilitation game with three conditions (Competitive, Co-active, and Collaborative modes). Engagement and social involvement were assessed through the Core Module and Social Presence Module, respectively, from the Game Experience Questionnaire. To infer the impact of personality and cognitive function, users answered the International Personality Item Pool (short version) and the Montreal Cognitive Assessment, respectively. Results: Results show that the Collaborative game mode promotes more social involvement when compared to Competitive and Co-active modes. This result is mostly explained by those participants with higher cognitive skills, and those that are more extrovert. Extrovert participants feel more empathy and are behaviorally more involved when playing the Collaborative mode. Also, the Collaborative mode is shown to be appropriate to promote interaction with participants that previously had a distant relationship, while the Competitive mode seems to be more beneficial to promote empathy between players with a closer relationship. Conclusions: The Collaborative game mode elicited significantly higher social involvement in terms of Empathy, Positive Affect, and Behavioral Involvement. Hence, this game mode seems to be the most adequate choice to be used in multiplayer rehabilitation settings, where social interaction is intended.info:eu-repo/semantics/publishedVersio

    The use of game modes to promote engagement and social involvement in multi-user serious games: a within-person randomized trial with stroke survivors

    Get PDF
    Serious games are promising for stroke rehabilitation, with studies showing a positive impact on reducing motor and cognitive defcits. However, most of the evidence is in the context of single-user rehabilitation, and little is known concerning the impact in multi-user settings. This study evaluates the impact that diferent game modes can have on engagement and social involvement during a two-user game. Specifcally, we want to under stand the benefts of game modalities based on competition, co-activation, and collaboration and analyze the infu ence of diferent motor and cognitive defcits and personality traits. Methods: We developed a two-player setup—using tangible objects and a large screen interactive table—for upper limb rehabilitation purposes. We implemented a game that, while keeping the same basic mechanics, can be played in the three diferent modes (Competitive, Co-active, and Collaborative). We ran a within-person randomized study with 21 stroke survivors that were paired and played the game in its three versions. We used the Game Experi ence Questionnaire—Core Module to assess engagement and the Social Presence Module to assess Social Involve ment. For personality, motor, and cognitive function, users answered the International Personality Item Pool (short version), Fugl-Meyer Assessment—Upper Extremity, Modifed Ashworth Scale, and Montreal Cognitive Assessment, respectively. Results: The Collaborative mode promoted signifcantly more Behavioral Involvement. The Competitive mode pro moted more Flow and Challenge than the Co-active mode with participants with better cognitive performance, with low extraversion, or with higher motor skills. Participants with higher cognitive defcits reported more Competence with the Co-active mode. Conclusions: Our results indicate that, for multi-user motor rehabilitation settings, the collaborative mode is the more appropriate gaming approach to promote social involvement, showing a high potential for increasing adher ence and efectiveness of therapy. Additionally, we show that a player’s motor and cognitive ability and personality should be considered when designing personalized tasks for multiplayer settings.info:eu-repo/semantics/publishedVersio

    The benefits of emotional stimuli in a virtual reality cognitive and motor rehabilitation task: assessing the impact of positive, negative and neutral stimuli with stroke patients

    Get PDF
    VR-based methods for stroke rehabilitation have mainly focused on motor rehabilitation, but there is increasing interest towards the integration of cognitive training for providing more ecologically valid solutions. However, more studies are needed, especially in the definition of which type of content should be used in the design of these tools. One possibility is the use of emotional stimuli, which are known to enhance attentional processes. According to the Socio-emotional Selectivity Theory, as people age, this emotional salience arises for positive and neutral, but not for negative stimuli. Conversely, negative stimuli can be better remembered. In this study, we investigated the impact of using emotional stimuli with positive, negative and neutral valence in a VR cognitive and motor attention task. Ten stroke patients participated in a within subjects experiment with four conditions based on the type of stimuli: abstract (control condition), positive, negative and neutral. The main task consisted of finding a target stimulus, shown for only two seconds, among fourteen neutral distractors. Eye movements were recorded with an eye-tracking system to investigate differences between conditions and in search patterns. Subsequently, a recall task took place and the patients had to identify all the target images among a valence-matched number of distractors. Our results corroborate the attention salience effect of positive and neutral stimuli in the VR task performance. Although we found no statistically significant differences between conditions in the recall task, there was a trend for recalling more negative images. This negative advantage comes at the expense of significantly more wrongly identified images/false memories for negative stimuli. Finally, we performed an analysis in which we relate performance scores with well-established cognitive assessment instruments, which supportsG the use of this approach both for assessment and rehabilitation purposes.info:eu-repo/semantics/publishedVersio

    Automating senior fitness testing through gesture detection with depth sensors

    Get PDF
    Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.info:eu-repo/semantics/publishedVersio
    corecore