45 research outputs found

    XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter

    Get PDF
    \ua9 The Author(s) 2024. Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive

    Optogenetic Multiphysical Fields Coupling Model for Implantable Neuroprosthetic Probes.

    Get PDF
    Optogenetic-based neuroprosthetic therapies are increasingly being considered for human trials. However, the optoelectronic design of clinical-grade optogenetic-based neuroprosthetic probes still requires some thought. Design constraints include light penetration into the brain, stimulation efficacy, and probe/tissue heating. Optimisation can be achieved through experimental iteration. However, this is costly, time-consuming and ethically problematic. Hence it is highly desirable to have an alternative to excessive animal trials. Thus, a simulation tool for optimising probe design can be an important benefit for the community. The challenge is to understand the interplay between the optical, neural and thermal aspects in the interaction of probe and living neural tissue. In this work, we propose a model which combines these aspects to allow clinically orientated neuroprosthetic teams to design neuroprosthetic probes for optogenetic therapies. Our model provides analyses for optical, thermal and optogenetic electrophysiological processes based on the energy equivalence and exchange among different physical fields. To validate and calibrate the model, optogenetic implantable neuroprosthetic arrayed probes based on miniature LEDs were developed. Then, optical, thermal measurement and neural photocurrent recording experiments were implemented on the probes. We can then provide analysis on exemplar arrayed neural probes

    Functional and Molecular Analysis of Human Osteoarthritic Chondrocytes Treated with Bone Marrow-Derived MSC-EVs

    Get PDF
    \ua9 2024 by the authors.Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-Ī³) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1Ī² on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics

    Double Imprinted Nanoparticles for Sequential Membrane-to-Nuclear Drug Delivery

    Get PDF
    \ua9 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH. Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERĪ±) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERĪ±. Upon specific binding of the materials to ERĪ±, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERĪ±, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment

    Optogenetic Multiphysical Fields Coupling Model for Implantable Neuroprosthetic Probes

    Get PDF
    AuthorsOptogenetic-based neuroprosthetic therapies are increasingly being considered for human trials. However, the optoelectronic design of clinical-grade optogenetic-based neuroprosthetic probes still requires some thought. Design constraints include light penetration into the brain, stimulation efficacy, and probe/tissue heating. Optimisation can be achieved through experimental iteration. However, this is costly, time-consuming and ethically problematic. Hence it is highly desirable to have an alternative to excessive animal trials. Thus, a simulation tool for optimising probe design can be an important benefit for the community. The challenge is to understand the interplay between the optical, neural and thermal aspects in the interaction of probe and living neural tissue. In this work, we propose a model which combines these aspects to allow clinically orientated neuroprosthetic teams to design neuroprosthetic probes for optogenetic therapies. Our model provides analyses for optical, thermal and optogenetic electrophysiological processes based on the energy equivalence and exchange among different physical fields. To validate and calibrate the model, optogenetic implantable neuroprosthetic arrayed probes based on miniature LEDs were developed. Then, optical, thermal measurement and neural photocurrent recording experiments were implemented on the probes. We can then provide analysis on exemplar arrayed neural probes

    Double imprinted nanoparticles for sequential membraneā€toā€nuclear drug delivery

    Get PDF
    Efficient and siteā€specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibodyā€drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including lifeā€threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERĪ±) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are costā€effective and rival the affinity of commercial antibodies for ERĪ±. Upon specific binding of the materials to ERĪ±, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptorā€mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERĪ±, paving the way for precision treatment of BC. Proofā€ofā€concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated threeā€dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment

    Distinctive features of orbital adipose tissue (OAT) in Gravesā€™ Orbitopathy

    Get PDF
    Depot specific expansion of orbital-adipose-tissue (OAT) in Gravesā€™ Orbitopathy (GO) is associated with lipid metabolism signaling defects. We hypothesize that the unique adipocyte biology of OAT facilitates its expansion in GO. A comprehensive comparison of OAT and white-adipose-tissue (WAT) was performed by light/electron-microscopy, lipidomic and transcriptional analysis using ex vivo WAT, healthy OAT (OAT-H) and OAT from GO (OAT-GO). OAT-H/OAT-GO have a single lipid-vacuole and low mitochondrial number. Lower lipolytic activity and smaller adipocytes of OAT-H/OAT-GO, accompanied by similar essential linoleic fatty acid (FA) and (low) FA synthesis to WAT, revealed a hyperplastic OAT expansion through external FA-uptake via abundant SLC27A6 (FA-transporter) expression. Mitochondrial dysfunction of OAT in GO was apparent, as evidenced by the increased mRNA expression of uncoupling protein 1 (UCP1) and mitofusin-2 (MFN2) in OAT-GO compared to OAT-H. Transcriptional profiles of OAT-H revealed high expression of Iroquois homeobox-family (IRX-3&5), and low expression in HOX-family/TBX5 (essential for WAT/BAT (brown-adipose-tissue)/BRITE (BRown-in-whITE) development). We demonstrated unique features of OAT not presented in either WAT or BAT/BRITE. This study reveals that the pathologically enhanced FA-uptake driven hyperplastic expansion of OAT in GO is associated with a depot specific mechanism (the SLC27A6 FA-transporter) and mitochondrial dysfunction. We uncovered that OAT functions as a distinctive fat depot, providing novel insights into adipocyte biology and the pathological development of OAT expansion in GO

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-ɑ. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice
    corecore