35 research outputs found

    Cosmo Cassette: A Microfluidic Microgravity Microbial System For Synthetic Biology Unit Tests and Satellite Missions

    Get PDF
    Although methods in the design-build-test life cycle of the synthetic biology field have grown rapidly, the expansion has been non-uniform. The design and build stages in development have seen innovations in the form of biological CAD and more efficient means for building DNA, RNA, and other biological constructs. The testing phase of the cycle remains in need of innovation. Presented will be both a theoretical abstraction of biological measurement and a practical demonstration of a microfluidics-based platform for characterizing synthetic biological phenomena. Such a platform demonstrates a design of additive manufacturing (3D printing) for construction of a microbial fuel cell (MFC) to be used in experiments carried out in space. First, the biocompatibility of the polypropylene chassis will be demonstrated. The novel MFCs will be cheaper, and faster to make and iterate through designs. The novel design will contain a manifold switchingdistribution system and an integrated in-chip set of reagent reservoirs fabricated via 3D printing. The automated nature of the 3D printing yields itself to higher resolution switching valves and leads to smaller sized payloads, lower cost, reduced power and a standardized platform for synthetic biology unit tests on Earth and in space. It will be demonstrated that the application of unit testing in synthetic biology will lead to the automatic construction and validation of desired constructs. Unit testing methodologies offer benefits of preemptive problem identification, change of facility, simplicity of integration, ease of documentation, and separation of interface from implementation, and automated design

    Nuclear history, politics, and futures from (A)toms-to(Z)oom: Design and deployment of a remote-learning special-topics course for nuclear engineering education

    Get PDF
    To address the lack of familiarity with nuclear history common among nuclear engineers and physicists, we outline the design and deployment of a special-topics course entitled “NE290: Nuclear History, Politics, and Futures” throughout which we contextualize the importance of the field at its inception, in current affairs, and in future endeavors. We argue that understanding this history is paramount in internalizing a sense of respect for the scientific, technical, and sociological ramifications of an unlocked atom—as well as its perils. We begin by outlining the gaps in secondary educational offerings for nuclear history and their importance in consideration with nontechnical engineering guidelines. We then outline a number of ABET specifications as pedagogical goals for NE290 from which we derive a list of target student learning objectives. Next, we outline the NE290 syllabus in terms of assignments and an overview of course content in the form of a class timeline. We provide an extensive description of the materials and teaching methodologies for the four units of NE290: Twentieth-Century Physics, Physics in WWII, the Early Cold War, and the Late Cold War and Modern Era. We detail the sequence of lectures across the course and historical timelines leading up to a showcasing of NE290 final projects which mirror in creativity the novelty of course offering. Because NE290 was first offered during Spring 2021 during the COVID-19 pandemic, additional measures in the form of new tools were used to augment the mandate of remote learning. In particular, we leveraged the newfound ubiquity of videoconferencing technology to recruit geographically diverse guest lecturers and used the MIRO tool for virtual whiteboarding. Lastly, we provide an accounting of course outcomes drawn from student feedback which—in tandem with the complete distribution of course material—facilitates the integration of nuclear history into the curriculum for the wider nuclear engineering and physics communities

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Astrovirology: Viruses at Large in the Universe

    No full text

    Towards an extension of equivalent system mass for human exploration missions on Mars.

    No full text
    NASA mission systems proposals are often compared using an equivalent system mass (ESM) framework, wherein all elements of a technology to deliver an effect-its components, operations, and logistics of delivery-are converted to effective masses, which has a known cost scale in space operations. To date, ESM methods and the tools for system comparison largely fail to consider complexities stemming from multiple transit and operations stages, such as would be required to support a crewed mission to Mars, and thus do not account for different mass equivalency factors during each period and the inter-dependencies of the costs across the mission segments. Further, ESM does not account well for the differential reliabilities of the underlying technologies. The uncertainty in the performance of technology should incur an equivalent mass penalty for technology options that might otherwise provide a mass advantage. Here we draw attention to the importance of addressing these limitations and formulate the basis of an extension of ESM that allows for a direct method for analyzing, optimizing, and comparing different mission systems. We outline a preliminary example of applying extended ESM (xESM) through a techno-economic calculation of crop-production technologies as an illustrative case for developing offworld biomanufacturing systems

    Wet Lab Accelerator : a web-based application democratizing laboratory automation for synthetic biology

    No full text
    Wet Lab Accelerator (WLA) is a cloud-based tool that allows a scientist to conduct biology via robotic control without the need for any programming knowledge. A drag and drop interface provides a convenient and user-friendly method of generating biological protocols. Graphically developed protocols are turned into programmatic instruction lists required to conduct experiments at the cloud laboratory Transcriptic. Prior to the development of WLA, biologists were required to write in a programming language called “Autoprotocol” in order to work with Transcriptic. WLA relies on a new abstraction layer we call “Omniprotocol” to convert the graphical experimental description into lower level Autoprotocol language, which then directs robots at Transcriptic. While WLA has only been tested at Transcriptic, the conversion of graphically laid out experimental steps into Autoprotocol is generic, allowing extension of WLA into other cloud laboratories in the future. WLA hopes to democratize biology by bringing automation to general biologists.5 page(s
    corecore