3,765 research outputs found

    Continuum and Emission-Line Properties of Broad Absorption Line Quasars

    Full text link
    We investigate the continuum and emission-line properties of 224 broad absorption line quasars (BALQSOs) with 0.9<z<4.4 drawn from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR), which contains 3814 bona fide quasars. We find that low-ionization BALQSOs (LoBALs) are significantly reddened as compared to normal quasars, in agreement with previous work. High-ionization BALQSOs (HiBALs) are also more reddened than the average nonBALQSO. Assuming SMC-like dust reddening at the quasar redshift, the amount of reddening needed to explain HiBALs is E(B-V)~0.023 and LoBALs is E(B-V)~0.077 (compared to the ensemble average of the entire quasar sample). We find that there are differences in the emission-line properties between the average HiBAL, LoBAL, and nonBAL quasar. These differences, along with differences in the absorption line troughs, may be related to intrinsic quasar properties such as the slope of the intrinsic (unreddened) continuum; more extreme absorption properties are correlated with bluer intrinsic continua. Despite the differences among BALQSO sub-types and nonBALQSOs, BALQSOs appear to be drawn from the same parent population as nonBALQSOs when both are selected by their UV/optical properties. We find that the overall fraction of traditionally defined BALQSOs, after correcting for color-dependent selection effects due to different SEDs of BALQSO and nonBALQSOs, is 13.4+/-1.2% and shows no significant redshift dependence for 1.7<z<3.45. After a rough completeness correction for the effects of dust extinction, we find that approximately one in every six quasars is a BALQSO.Comment: 35 pages, 11 figures (1 color), 1 table; accepted by A

    Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability

    Full text link
    Using Sloan Digital Sky Survey (SDSS) quasar spectra taken at multiple epochs, we find that the composite flux density differences in the rest frame wavelength range 1300-6000 AA can be fit by a standard thermal accretion disk model where the accretion rate has changed from one epoch to the next (without considering additional continuum emission components). The fit to the composite residual has two free parameters: a normalizing constant and the average characteristic temperature Tˉ\bar{T}^*. In turn the characteristic temperature is dependent on the ratio of the mass accretion rate to the square of the black hole mass. We therefore conclude that most of the UV/optical variability may be due to processes involving the disk, and thus that a significant fraction of the UV/optical spectrum may come directly from the disk.Comment: 31 pages, 8 figure

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Exploratory Chandra Observations of the Three Highest Redshift Quasars Known

    Full text link
    We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a complete set of color-selected, z > 5.7 quasars. X-ray emission is detected from all of the quasars at levels that indicate that the X-ray to optical flux ratios of z ~ 6 optically selected quasars are similar to those of lower redshift quasars. The observations demonstrate that it will be feasible to obtain quality X-ray spectra of z ~ 6 quasars with current and future X-ray missions.Comment: 15 pages, ApJL, in press; small revisions to address referee Comment

    The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies

    Full text link
    We have measured the stellar velocity dispersions (\sigma_*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z=0.452, high quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M_BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses are correlated with both the host luminosities (L_{H}) and the stellar velocity dispersions (\sigma_*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatter in the correlations are large (~0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M_BH ~ L_H^{0.73+-0.05} and M_BH ~ \sigma_*^{3.34+-0.24}. The amplitude of the M_BH-\sigma_* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion.Comment: Accepted for publication in A

    Tunneling Between Parallel Two-Dimensional Electron Gases

    Get PDF
    The tunneling between two parallel two-dimensional electron gases has been investigated as a function of temperature TT, carrier density nn, and the applied perpendicular magnetic field BB. In zero magnetic field the equilibrium resonant lineshape is Lorentzian, reflecting the Lorentzian form of the spectral functions within each layer. From the width of the tunneling resonance the lifetime of the electrons within a 2DEG has been measured as a function of nn and TT, giving information about the density dependence of the electron-impurity scattering and the temperature dependence of the electron-electron scattering. In a magnetic field there is a general suppression of equilibrium tunneling for fields above B=0.6B=0.6 T. A gap in the tunneling density of states has been measured over a wide range of magnetic fields and filling factors, and various theoretical predictions have been examined. In a strong magnetic field, when there is only one partially filled Landau level in each layer, the temperature dependence of the conductance characteristics has been modeled with a double-Gaussian spectral density.Comment: LaTeX requires REVTeX macros. Eighteen pages. Fourteen postscript figures are included. (All figures have been bitmapped to save space. The original can be requested by email from [email protected]). Accepted for publication in Phys. Rev.
    corecore