13 research outputs found

    Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps

    Get PDF
    Thrombosis is a frequent, life-threatening complication of systemic infection, associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days post-infection persisting after the infection resolves, and is monocytic cell-dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared to the liver, being evident by 24 h and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provide a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo

    Travelling with Dengue: From the Skin to the Nodes

    Get PDF
    Dengue virus (DENV) infects humans through the skin. The early infection and encounters between DENV and cutaneous immune and non‐immune cells only recently are under investigation. We have reported DENV‐infected cutaneous dendritic cells (DCs), also keratinocytes and dermal fibroblasts permissive to DENV infection. Now, upon cutaneously inoculating fluorescently labeled DENV into immune‐competent mice, we found DENV mostly in dermis from 1 h post‐inoculation. Afterwards, DENV rapidly localized in the subcapsular sinus of draining lymph nodes (DLNs) associated with CD169+ macrophages, suggesting virus travelling through lymph flow. However, DENV association with CD11c+ DCs in the paracortex and T:B border suggests DENV being ferried from the skin to DLNs by DCs too. DENV was not associated with F4/80+ macrophages nor with DEC205+ DCs, but it was inside B cell follicles early after cutaneous inoculation. DENV inside B follicles likely affects the development of humoral responses. Antibody responses deserve very careful scrutiny as neutralizing memory antibodies are crucial to counteract homotypic reinfections whereas non‐neutralizing ones might facilitate heterotypic DENV infection or even Zika infection, another flavivirus. Unravelling the DENV journey from skin to lymph into regional nodes and the cellular compartments will aid to understand the disease, its pathology and how to counteract it

    Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella.

    Get PDF
    Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-Îł and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-Îł-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-Îł-/- and T-bet-/- mice. In IFN-Îł-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-Îł reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-Îł. T-bet-/- mice induce significant levels of IFN-Îł- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-Îł-dependent iNOS+ granulomas and prevent dissemination

    Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade

    Get PDF
    Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcÎłRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination

    A new player in the game: platelet-derived extracellular vesicles in dengue hemorrhagic fever

    No full text
    Thrombocytopenia and vascular leakage are clinical hallmarks in dengue hemorrhagic fever. Sung et al. present a new mechanism where platelet-derived extracellular vesicles participate in increasing vascular permeability during dengue virus infection in mice

    CLEC-2 Prevents Accumulation and Retention of Inflammatory Macrophages During Murine Peritonitis

    No full text
    International audiencePlatelets play a key role in the development, progression and resolution of the inflammatory response during sterile inflammation and infection, although the mechanism is not well understood. Here we show that platelet CLEC-2 reduces tissue inflammation by regulating inflammatory macrophage activation and trafficking from the inflamed tissues. The immune regulatory function of CLEC-2 depends on the expression of its ligand, podoplanin, upregulated on inflammatory macrophages and is independent of platelet activation and secretion. Mechanistically, platelet CLEC-2 and also recombinant CLEC-2-Fc accelerates actin rearrangement and macrophage migration by increasing the expression of podoplanin and CD44, and their interaction with the ERM proteins. During ongoing inflammation, induced by lipopolysaccharide, treatment with rCLEC-2-Fc induces the rapid emigration of peritoneal inflammatory macrophages to mesenteric lymph nodes, thus reducing the accumulation of inflammatory macrophages in the inflamed peritoneum. This is associated with a significant decrease in pro-inflammatory cytokine, TNF-α and an increase in levels of immunosuppressive, IL-10 in the peritoneum. Increased podoplanin expression and actin remodelling favour macrophage migration towards CCL21, a soluble ligand for podoplanin and chemoattractant secreted by lymph node lymphatic endothelial cells. Macrophage efflux to draining lymph nodes induces T cell priming. In conclusion, we show that platelet CLEC-2 reduces the inflammatory phenotype of macrophages and their accumulation, leading to diminished tissue inflammation. These immunomodulatory functions of CLEC-2 are a novel strategy to reduce tissue inflammation and could be therapeutically exploited through rCLEC-2-Fc, to limit the progression to chronic inflammation

    Intestinal CD103+CD11b+ cDC2 conventional dendritic cells are required for primary CD4+ T and B cell responses to soluble flagellin

    Get PDF
    Systemic immunization with soluble flagellin (sFliC) from Salmonella Typhimurium induces mucosal responses, offering potential as an adjuvant platform for vaccines. Moreover, this engagement of mucosal immunity is necessary for optimal systemic immunity, demonstrating an interaction between these two semi-autonomous immune systems. Although TLR5 and CD103+CD11b+ cDC2 contribute to this process, the relationship between these is unclear in the early activation of CD4+ T cells and the development of antigen-specific B cell responses. In this work, we use TLR5-deficient mice and CD11c-cre.Irf4fl/fl mice (which have reduced numbers of cDC2, particularly intestinal CD103+CD11b+ cDCs), to address these points by studying the responses concurrently in the spleen and the mesenteric lymph nodes (MLN). We show that CD103+CD11b+ cDC2 respond rapidly and accumulate in the MLN after immunization with sFliC in a TLR5-dependent manner. Furthermore, we identify that whilst CD103+CD11b+ cDC2 are essential for the induction of primary T and B cell responses in the mucosa, they do not play such a central role for the induction of these responses in the spleen. Additionally, we show the involvement of CD103+CD11b+ cDC2 in the induction of Th2-associated responses. CD11c-cre.Irf4fl/fl mice showed a reduced primary FliC-specific Th2-associated IgG1 responses, but enhanced Th1-associated IgG2c responses. These data expand our current understanding of the mucosal immune responses promoted by sFliC and highlights the potential of this adjuvant for vaccine usage by taking advantage of the functionality of mucosal CD103+CD11b+ cDC2

    Mice deficient in T-bet form inducible NO synthase-positive granulomas that fail to constrain Salmonella

    Get PDF
    Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-Îł and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-Îł-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-Îł-/- and T-bet-/- mice. In IFN-Îł-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-Îł reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-Îł. T-bet-/- mice induce significant levels of IFN-Îł- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-Îł-dependent iNOS+ granulomas and prevent dissemination
    corecore