8 research outputs found

    Mechanism of action of sulfonylurea: direct epac activation or PDE inhibition

    No full text
    Diabetes mellitus ist die häufigste Stoffwechselerkrankung in Deutschland. Sulfonylharnstoffe (SH) stellen die älteste und eine sehr prominente Gruppe in der oralen Therapie des Diabetes mellitus Typ II dar, die eine verstärkte Insulinfreisetzung vorrangig durch die Hemmung eines ATP-sensitiven Kaliumkanals (K+ATPKanal) erreichen. Daneben konnten weitere Proteine identifiziert werden, die mit SH interagieren und zu deren Effekten beitragen. Während bereits in frühen Arbeiten gezeigt werden konnte, dass SH Vertreter der Phosphodiesterasen (PDE)Familie in ihrer Funktion behindern können, wurde kürzlich Epac2 (exchange protein directly activated by cAMP 2) als weiteres Zielprotein für SH angeführt. Insbesondere die Fähigkeit von SH, direkt an Epac2 zu binden, wird in der Literatur kontrovers diskutiert und eine indirekte Aktivierung durch eine PDE-Hemmung und einen erhöhten cAMP-Spiegel als Mechanismus vermutet. Zur weiteren Untersuchung wurden in dieser Arbeit FRET-basierte Biosensoren verwendet, um die Wirkung von SH auf Epac und PDEs näher zu untersuchen. Dabei konnte sowohl in einem photometrischen Ansatz als auch in lebenden Zellen, die einen Epac2-basierten Sensor enthalten, gezeigt werden, dass eine Aktivierung durch SH stattfindet. Da sowohl Epac2-camps, der von allen hier verwendeten Sensoren mit der höchsten Sensitivität für cAMP, als auch CFP-Epac1δDEPYFP nicht auf SH reagieren, ist diese Aktivierung selektiv für die Isoform Epac2 und wird vorrangig nicht durch eine PDE-Hemmung verursacht. Die Verwendung weiterer Sensoren mit verschiedenen Varianten von Epac2 (verlängerte Version von Epac2-camps) zeigen mit zunehmender Länge über die cAMP-Bindedomäne hinaus eine beginnende Reaktion im Sinne einer instabilen FRET-Kurve (Epac2camps long) bzw. eine deutliche Aktivierung durch den SH (Epac2-camps superlong), wodurch eine direkte Aktivierung bestätigt wird, und suggerieren eine Bindestelle für SH, die sich von denen von cAMP unterschiedet und weiter eingeengt werden konnte (im näheren Bereich von Q454 bzw. E460). Obwohl hierdurch eine direkte Aktivierung gezeigt werden konnte, ist die grundsätzliche Fähigkeit der SH, PDE zu beeinflussen, keineswegs geklärt. Daher wurden weitere Sensoren konstruiert bzw. verwendet, die basierend auf Epac1-camps und Epac2-camps verschiedene PDEs enthalten. Dabei konnte durch die Zugabe von SH eine deutliche Aktivierung des jeweiligen Sensors und somit eine PDEHemmung nachgewiesen werden. Dies konnte sowohl für PDE4A als auch für die in Inselzellen überwiegend vorkommende PDE3B gezeigt werden. Dadurch ergeben sich einige (klinisch relevante) Implikationen. Zum einen stellt neben der direkten Epac-Aktivierung auch die direkte Hemmung der PDE einen wichtigen Mechanismus für die Sekretion von Insulin dar. Außerdem sind bei PDEHemmung und direkter Epac-Aktivierung außerhalb der Inselzellen auch Nebenwirkungen in anderen Organen zu erwarten wie z.B. die Entstehung lebensgefährlicher Rhythmusstörungen in Herzmuskelzellen.Diabetes is the most common metabolic disease in the developed world. Sulfonylurea (SU) are one of the oldest and prominent group of oral antidiabetic drugs that act by inhibiting an ATP-sensitive potassium channel and increasing insulin release. Furthermore, additional targets have been identified that interact with SU. Whereas early works could show that SU can inhibit the function of different phosphodiesterases (PDEs), Epac2 (exchange protein directly activated by cyclic AMP) has been identified as yet another target protein for CU. Especially the ability to activate Epac2 by direct binding has been subject of controversial debate. In this study we used FRET-based biosensor to investigate the effects of SU on Epac and different PDEs. We could show that SU can activate Epac by direct binding that is selective top the isoform Epac2. The use of different sensors that contain different parts of Epac2 even revealed the approximate location of the binding site that is different to that of cAMP. Moreover, the use of other biosensor containing isoforms of PDE showed the ability of SU to strongly inhibit PDE3 and PDE4. This leads to several (clinically relevant) implications. Firstly, the direct activation of Epac2 present an important mechanism of insulin release. On the other hand, the activation of Epac2 and inhibition of different PDEs in all cells and tissues might lead to numerous side effects in other organs, e.g. the formation of life threatening cardiac arrythmias

    LMNA Mutation in a Family with a Strong History of Sudden Cardiac Death

    No full text
    We report a family with heterozygous deletion of exons 3–6 of the LMNA gene. The main presentation of affected family members was characterized by ventricular and supraventricular arrhythmias, atrioventricular (AV) block and sudden cardiac death (SCD) but also by severe dilative cardiomyopathy (DCM). We report on two siblings, a 36-year-old female and her 40-year-old brother, who suffer from heart failure with mildly reduced ejection fraction, AV conduction delays and premature ventricular complexes. Their 65-year-old mother underwent heart transplantation at the age of 55 due to advanced heart failure. Originally, the LMNA mutation was detected in one of the uncles. This index patient and three of his brothers died of SCD as well as their father and aunt. The two siblings were treated with implanted defibrillators in our specialized tertiary heart failure center. This case report places this specific genetic variant in the context of LMNA-associated familial DCM

    Testosterone Levels and Type 2 Diabetes—No Correlation with Age, Differential Predictive Value in Men and Women

    No full text
    Most studies reporting on the association of circulating testosterone levels with type 2 diabetes in men are of cross-sectional design. Reports on the relevance of altered testosterone levels in women are scarce. Here, we evaluate the role of low serum testosterone levels for incident diabetes in men and women in a population setting of 7706 subjects (3896 females). During a mean follow up time of 13.8 years, 7.8% developed type 2 diabetes. Significant correlations of testosterone with high density lipoprotein (HDL)-cholesterol (R = 0.21, p < 0.001), body-mass-index (R = −0.23, p < 0.001), and waist-to-hip-ratio (R = −0.21, p < 0.001) were found in men. No correlation was found with age in men; in women, the correlation was negligible (R = 0.04, p = 0.012). In men, low testosterone levels predicted high risk of type 2 diabetes, while in women this relationship was opposite. Men with low testosterone levels showed increased risk of future diabetes (hazard ratio (HR) 2.66, 95% confidence interval (CI) 1.91–3.72, p < 0.001 in basic model; HR 1.56 95%, CI 1.10–2.21, p = 0.003). In women, low testosterone levels indicated lower risk with (HR 0.53, 95% CI 0.37–0.77, p = 0.003), while the association lost significance in the fully adjusted model (HR 0.72, 95% CI 0.49–1.05, p = 0.09). Low levels of testosterone predicted future diabetes in men. A borderline opposite association was found in women

    cAMP Imaging at Ryanodine Receptors Reveals β -Adrenoceptor Driven Arrhythmias

    No full text
    Berisha F, Götz KR, Wegener J, et al. cAMP Imaging at Ryanodine Receptors Reveals β -Adrenoceptor Driven Arrhythmias. Circulation Research. 2021;129(1):81-94.**Rationale:** 3′,5′-cAMP is a ubiquitous second messenger which, upon β-AR (β-adrenergic receptor) stimulation, acts in microdomains to regulate cardiac excitation-contraction coupling by activating phosphorylation of calcium handling proteins. One crucial microdomain is in vicinity of the cardiac RyR2 (ryanodine receptor type 2) which is associated with arrhythmogenic diastolic calcium leak from the sarcoplasmic reticulum often occurring in heart failure. **Objective:** We sought to establish a real-time live-cell imaging approach capable of directly visualizing cAMP in the vicinity of mouse and human RyR2 and to analyze its pathological changes in failing cardiomyocytes under β-AR stimulation. **Methods and Results:** We generated a novel targeted fluorescent biosensor Epac1 (exchange protein directly activated by cAMP 1)-JNC (junctin) for RyR2-associated cAMP and expressed it in transgenic mouse hearts as well in human ventricular myocytes using adenoviral gene transfer. In healthy cardiomyocytes, β1-AR but not β2-AR stimulation strongly increased local RyR2-associated cAMP levels. However, already in cardiac hypertrophy induced by aortic banding, there was a marked subcellular redistribution of PDEs (phosphodiesterases) 2, 3, and 4, which included a dramatic loss of the local pool of PDE4. This was also accompanied by measurable β2-AR/AMP signals in the vicinity of RyR2 in failing mouse and human myocytes, increased β2-AR–dependent RyR2 phosphorylation, sarcoplasmic reticulum calcium leak, and arrhythmia susceptibility. **Conclusions:** Our new imaging approach could visualize cAMP levels in the direct vicinity of cardiac RyR2. Unexpectedly, in mouse and human failing myocytes, it could uncover functionally relevant local arrhythmogenic β2-AR/cAMP signals which might be an interesting antiarrhythmic target for heart failure
    corecore