3,162 research outputs found

    Kinetic decoupling of neutralino dark matter

    Get PDF
    After neutralinos cease annihilating in the early Universe, they may still scatter elastically from other particles in the primordial plasma. At some point in time, however, they will eventually stop scattering. We calculate the cross sections for neutralino elastic scattering from standard-model particles to determine the time at which this kinetic decoupling occurs. We show that kinetic decoupling occurs above a temperature TT\sim MeV. Thereafter, neutralinos act as collisionless cold dark matter.Comment: Replaced with revised version, new references adde

    QED radiative corrections to the decay pi^0 to e^+e^-

    Full text link
    We reconsider QED radiative corrections (RC) to the π0e+e\pi^{0}\to e^{+}e^{-} decay width. One kind of RC investigated earlier has a renormalization group origin and can be associated with the final state interaction of electron and positron. It determines the distribution of lepton pair invariant masses in the whole kinematic region. The other type of RC has a double-logarithmic character and is related to almost on-mass-shell behavior of the lepton form factors. The total effect of RC for the π0e+e\pi^{0}\to e^{+}e^{-} decay is estimated to be 3.2% and for the decay ηe+e\eta \to e^{+}e^{-} is 4.3%.Comment: 12 pages, 3 figure

    Microscopic calculation of 6Li elastic and transition form factors

    Get PDF
    Variational Monte Carlo wave functions, obtained from a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana-IX three-nucleon interactions, are used to calculate the 6Li ground-state longitudinal and transverse form factors as well as transition form factors to the first four excited states. The charge and current operators include one- and two-body components, leading terms of which are constructed consistently with the two-nucleon interaction. The calculated form factors and radiative widths are in good agreement with available experimental data.Comment: 9 pages, 2 figures, REVTeX, submitted to Physical Review Letters, with updated introduction and reference

    Magnetic anisotropy of individual maghemite mesocrystals

    Get PDF
    Interest in creating magnetic metamaterials has led to methods for growing superstructures of magnetic nanoparticles. Mesoscopic crystals of maghemite (gamma-Fe2O3) nanoparticles can be arranged into highly ordered body-centered tetragonal lattices of up to a few micrometers. Although measurements on disordered ensembles have been carried out, determining the magnetic properties of individual mesoscopic crystals is challenging due to their small total magnetic moment. Here, we overcome these challenges by utilizing sensitive dynamic cantilever magnetometry to study individual micrometer-sized gamma-Fe2O3 mesocrystals. These measurements reveal an unambiguous cubic anisotropy, resulting from the crystalline anisotropy of the constituent maghemite nanoparticles and their alignment within the mesoscopic lattice. The signatures of anisotropy and its origins come to light because we combine the self-assembly of highly ordered mesocrystals with the ability to resolve their individual magnetism. This combination is promising for future studies of the magnetic anisotropy of other nanoparticles, which are too small to investigate individually

    On mass corrections to the decays P \to l^+l^-

    Full text link
    We use the Mellin-Barnes representation in order to improve the theoretical estimate of mass corrections to the width of light pseudoscalar meson decay into a lepton pair, Pl+lP\to l^+l^- . The full resummation of the terms ln(ml2/Λ2)(ml2/Λ2)n\ln(m_l^2/\Lambda^2)(m_l^2/\Lambda^2)^n and (ml2/Λ2)n(m_l^2/\Lambda^2)^n to the decay amplitude is performed, where mlm_l is the lepton mass and Λmρ\Lambda\approx m_\rho is the characteristic scale of the PγγP\to\gamma^*\gamma^* form factor. The total effect of mass corrections for the e+ee^+e^- channel is negligible and for the μ+μ\mu^+\mu^- channel its order is of a few per cent.Comment: 10 pages, 1 figure; one figure is adde

    Rare decay \pi^0 \to e^+e^- as a Test of Standard Model

    Full text link
    Experimental and theoretical progress concerning the rare decay \pi^0 \to e^+e^- is briefly reviewed. It includes the latest data from KTeV and a new model independent estimate of the decay branching which show the deviation between experiment and theory at the level of 3.3σ3.3\sigma. The predictions for \eta and \eta' decays into lepton pair are presented. We also comment on the impact on the pion rare decay estimate of the BABAR collaboration on the pion transition form factor at large momentum transfer.Comment: 11 pages, 2 figures, extended version of the talk given at "New Physics and Quantum Chromodynamics at External Conditions" conference, May 3-6, 2009, Dnipropetrovsk, Ukrain

    Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes

    Full text link
    Kaluza-Klein dark matter particles can annihilate efficiently into electron-positron pairs, providing a discrete feature (a sharp edge) in the cosmic e+ee^+ e^- spectrum at an energy equal to the particle's mass (typically several hundred GeV to one TeV). Although this feature is probably beyond the reach of satellite or balloon-based cosmic ray experiments (those that distinguish the charge and mass of the primary particle), gamma ray telescopes may provide an alternative detection method. Designed to observe very high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy, will also observe any high energy showers (several hundred GeV and above) in its calorimeter. We show that high-significance detections of an electron-positron feature from Kaluza-Klein dark matter annihilations are possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure

    Energy Dependence of the Delta Resonance: Chiral Dynamics in Action

    Full text link
    There is an important connection between the low energy theorems of QCD and the energy dependence of the Delta resonance in pi-N scattering, as well as the closely related gamma^{*} N -> pi N reaction. The resonance shape is due not only to the strong pi-N interaction in the p wave but the small interaction in the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD (i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental tests of chiral perturbation theory and chiral based models is presentedComment: 11 pages, 6 figures, Festschrift for S.N. yan
    corecore