15 research outputs found
Coarse-Grained Dendrimers in a Good Solvent: Comparison of Monte Carlo Simulations, Self-Consistent Field Theory, and a Hybrid Modeling Strategy
Recently, a hybrid method has been developed, wherein the positions of some polymer segments are constrained to a small volume. The volume's position is sampled with a Monte Carlo algorithm. The distribution of the remaining segments is determined with ScheutjensâFleer self-consistent field theory (SF-SCF). This incorporates thermal fluctuations into the model. Here it is investigated whether this also leads to an improved treatment of the excluded volume interactions. Dendrimers, with f = 1â
â
â
7 generations, g = 2â
â
â
5 spacers per branch point, and spacers of 20 or 50 segments, are used as a model system. The focus is on the radius of gyration, the asphericity, the radial density, and the end point and first branch point distribution. As expected, both SCF methods underestimate the radius of gyration due to underestimating the short range excluded volume. The SF-SCF model, however, also gives a slightly different scaling and, in contrast to the other models, also predicts a bimodal distribution for first generation branch points for large f and g. This difference is attributed to overestimating the excluded volume at long ranges. As the hybrid method does not show this, localizing just a few segments largely compensates this shortcoming in the SF-SCF theory.</p
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the upcoming v1.2 release, and has underpinned multiple scientific studies. In this work, we highlight the latest features of the API format, accompanying software tools, and provide an update on the implementation of OPTIMADE in contributing materials databases. We end by providing several use cases that demonstrate the utility of the OPTIMADE API in materials research that continue to drive its ongoing development
Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study
BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12âgâdl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (â„week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] gâdl-1 for neonates in week 1, 9.6 [7.7 to 10.4] gâdl-1 in week 2 and 8.0 [7.3 to 9.0] gâdl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] mlâkg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] gâdl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348
Coarse-Grained Dendrimers in a Good Solvent: Comparison of Monte Carlo Simulations, Self-Consistent Field Theory, and a Hybrid Modeling Strategy
Recently, a hybrid method has been developed, wherein the positions of some polymer segments are constrained to a small volume. The volume's position is sampled with a Monte Carlo algorithm. The distribution of the remaining segments is determined with ScheutjensâFleer self-consistent field theory (SF-SCF). This incorporates thermal fluctuations into the model. Here it is investigated whether this also leads to an improved treatment of the excluded volume interactions. Dendrimers, with f = 1â
â
â
7 generations, g = 2â
â
â
5 spacers per branch point, and spacers of 20 or 50 segments, are used as a model system. The focus is on the radius of gyration, the asphericity, the radial density, and the end point and first branch point distribution. As expected, both SCF methods underestimate the radius of gyration due to underestimating the short range excluded volume. The SF-SCF model, however, also gives a slightly different scaling and, in contrast to the other models, also predicts a bimodal distribution for first generation branch points for large f and g. This difference is attributed to overestimating the excluded volume at long ranges. As the hybrid method does not show this, localizing just a few segments largely compensates this shortcoming in the SF-SCF theory
The beam and detector of the NA62 experiment at CERN
NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K(+) â Ï(+) Μ bar nu decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data
Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE)
Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown.
Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events.
Results: Infants (n=5609) born at mean (standard deviation [sd]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04-1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15-1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7-3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64-7.71) and mortality (RR=19.80; 95% CI, 5.87-66.7).
Conclusions: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants