256 research outputs found
Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report
<p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p
Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report
<p>Abstract</p> <p>Introduction</p> <p>Multidrug-resistant <it>Acinetobacter baumannii </it>has become a significant cause of healthcare-associated infections, but few reports have addressed <it>Acinetobacter baumannii </it>infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants.</p> <p>Case presentation</p> <p>The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive <it>Enterococcus </it>and <it>Acinetobacter baumannii </it>(sensitive only to amikacin and imipenem). The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive <it>Enterococcus </it>and coagulase-negative <it>Staphylococcus </it>but no multidrug-resistant <it>Acinetobacter baumannii</it>. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem.</p> <p>Conclusion</p> <p>We describe the successful treatment of an acute infection from multidrug-resistant <it>Acinetobacter baumannii </it>with debridement and retention of the total hip arthroplasty, using monotherapy with imipenem. This case challenges the general assumption that all orthopedic-device infections due to multidrug-resistant gram-negative organisms will require hardware removal. Further studies are needed to determine if organisms such as multidrug-resistant <it>Acinetobacter baumannii </it>are amenable to treatment with hardware retention.</p
First report of the blaOXA-58 gene in a clinical isolate of Acinetobacter baumannii in Rio de Janeiro, Brazil
Carbapenemase production is an important mechanism of carbapenem resistance among nonfermentative Gram-negative isolates. This study aimed to report the detection of blaOXA-58 gene in multiresistant clinical isolates of Acinetobacter baumannii recovered from inpatients in a public hospital. Polymerase chain reaction tests were performed to detect the blaOXA-23-like, blaOXA-24-like, blaOXA-58-like and blaOXA-51-like genes. The blaOXA-58 and blaOXA-23 genes were detected in one and three isolates, respectively. Sequencing of the blaOXA-58-like amplicon revealed 100% identity with the A. baumannii blaOXA-58 gene listed in the GenBank database. This is the first report of an OXA-58-producing A. baumannii isolate in Rio de Janeiro, Brazil
Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species
Abstract
Background: The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in
the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial
infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved
in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in
particular in the intensive care unit; this persistence could be partially explained by the capacity of these
microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types
of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different
species.
Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter
spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid
interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus
5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface;
between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the
biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than
for Acinetobacter G3 (36%, 27% & 9% respectively).
Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of
biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to
their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the
ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not
observed in other Acinetobacter species
Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway
<p>Abstract</p> <p>Background</p> <p>Increasing reports of carbapenem resistant <it>Acinetobacter baumannii </it>infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility testing methods for testing the imipenem susceptibilities of <it>A. baumannii </it>isolates, by comparing to the validated test methods.</p> <p>Methods</p> <p>Selected 112 clinical isolates of <it>A. baumanii </it>collected between January 2003 and May 2006 were tested to confirm imipenem susceptibility results. Strains were tested against imipenem by the reference broth microdilution (BMD), disk diffusion (DD), Etest, BD Phoenix, MicroScan WalkAway and Vitek 2 automated systems. Data were analysed by comparing the results from each test method to those produced by the reference BMD test.</p> <p>Results</p> <p>MicroScan performed true identification of all <it>A. baumannii </it>strains while Vitek 2 unidentified one strain, Phoenix unidentified two strains and misidentified two strains. Eighty seven of the strains (78%) were resistant to imipenem by BMD. Etest, Vitek 2 and BD Phoenix produced acceptable error rates when tested against imipenem. Etest showed the best performance with only two minor errors (1.8%). Vitek 2 produced eight minor errors(7.2%). BD Phoenix produced three major errors (2.8%). DD produced two very major errors (1.8%) (slightly higher (0.3%) than the acceptable limit) and three major errors (2.7%). MicroScan showed the worst performance in susceptibility testing with unacceptable error rates; 28 very major (25%) and 50 minor errors (44.6%).</p> <p>Conclusion</p> <p>Reporting errors for <it>A. baumannii </it>against imipenem do exist in susceptibility testing systems. We suggest clinical laboratories using MicroScan system for routine use should consider using a second, independent antimicrobial susceptibility testing method to validate imipenem susceptibility. Etest, whereever available, may be used as an easy method to confirm imipenem susceptibility.</p
In-Vitro Activity of Polymyxin B, Rifampicin, Tigecycline Alone and in Combination against Carbapenem-Resistant Acinetobacter baumannii in Singapore
OBJECTIVE: Carbapenem-resistant Acinetobacter baumannii (CR-AB) is an emerging cause of nosocomial infections worldwide. Combination therapy may be the only viable option until new antibiotics become available. The objective of this study is to identify potential antimicrobial combinations against CR-AB isolated from our local hospitals. METHODS: AB isolates from all public hospitals in Singapore were systematically collected between 2006 and 2007. MICs were determined according to CLSI guidelines. All CR-AB isolates were genotyped using a PCR-based method. Clonal relationship was elucidated. Time-kill studies (TKS) were conducted with polymyxin B, rifampicin and tigecycline alone and in combination using clinically relevant (achievable) unbound concentrations. RESULTS: 31 CR AB isolates were identified. They are multidrug-resistant, but are susceptible to polymyxin B. From clonal typing, 8 clonal groups were identified and 11 isolates exhibited clonal diversity. In single TKS, polymyxin B, rifampicin and tigecycline alone did not exhibit bactericidal activity at 24 hours. In combination TKS, polymyxin plus rifampicin, polymyxin B plus tigecycline and tigecycline plus rifampicin exhibited bactericidal killing in 13/31, 9/31 and 7/31 isolates respectively at 24 hours. Within a clonal group, there may be no consensus with the types of antibiotics combinations that could still kill effectively. CONCLUSION: Monotherapy with polymyxin B may not be adequate against polymyxin B susceptible AB isolates. These findings demonstrate that in-vitro synergy of antibiotic combinations in CR AB may be strain dependant. It may guide us in choosing a pre-emptive therapy for CR AB infections and warrants further investigations
- …