34 research outputs found

    Requirements for Efficient Proteolytic Cleavage of Prelamin A by ZMPSTE24

    Get PDF
    The proteolytic maturation of the nuclear protein lamin A by the zinc metalloprotease ZMPSTE24 is critical for human health. The lamin A precursor, prelamin A, undergoes a multi-step maturation process that includes CAAX processing (farnesylation, proteolysis and carboxylmethylation of the C-terminal CAAX motif), followed by ZMPSTE24-mediated cleavage of the last 15 amino acids, including the modified C-terminus. Failure to cleave the prelamin A "tail", due to mutations in either prelamin A or ZMPSTE24, results in a permanently prenylated form of prelamin A that underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) and related progeroid disorders.Here we have investigated the features of the prelamin A substrate that are required for efficient cleavage by ZMPSTE24. We find that the C-terminal 41 amino acids of prelamin A contain sufficient context to allow cleavage of the tail by ZMPSTE24. We have identified several mutations in amino acids immediately surrounding the cleavage site (between Y646 and L647) that interfere with efficient cleavage of the prelamin A tail; these mutations include R644C, L648A and N650A, in addition to the previously reported L647R. Our data suggests that 9 of the 15 residues within the cleaved tail that lie immediately upstream of the CAAX motif are not critical for ZMPSTE24-mediated cleavage, as they can be replaced by the 9 amino acid HA epitope. However, duplication of the same 9 amino acids (to increase the distance between the prenyl group and the cleavage site) impairs the ability of ZMPSTE24 to cleave prelamin A.Our data reveals amino acid preferences flanking the ZMPSTE24 cleavage site of prelamin A and suggests that spacing from the farnesyl-cysteine to the cleavage site is important for optimal ZMPSTE24 cleavage. These studies begin to elucidate the substrate requirements of an enzyme activity critical to human health and longevity

    Dynamics of Lamin-A Processing Following Precursor Accumulation

    Get PDF
    Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed

    A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

    Get PDF
    Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. // Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type specific depletion was used in a murine model of acquired epilepsy. // Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers, and in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. // Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    Phosphatidylserine targeting for diagnosis and treatment of human diseases

    Get PDF
    Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface

    Molecular insights into the premature aging disease progeria

    Get PDF

    Coordinated and circumlocutory semantic naming errors are related to anterolateral temporal lobes in mild AD, amnestic mild cognitive impairment, and normal aging

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Naming difficulties are characteristic of Alzheimer s disease (AD) and to a lesser extent, of amnestic mild cognitive impairment (aMCI) patients The association of naming impairment with anterior temporal lobe (ATL) atrophy in Semantic Dementia (SD) could be a tip of the Iceberg effect in which case the atrophy is a marker of more generalized temporal lobe pathology Alternatively, it could reflect the existence of a functional gradient within the temporal lobes wherein more anterior regions provide the basis for greater specificity of representation We tested these two hypotheses in a study of 15 subjects with mild AD 17 with aMCI and 16 aged control subjects and showed that coordinate and circumlocutory semantic error production on the Boston Naming Test was weakly correlated with ATL gray matter density as determined by voxel based morphometry Additionally we investigated whether these errors were benefited by phonemic cues, and similarly to SD, our AD patients had small improvement Because there is minimal gradient of temporal lobe atrophy in AD or MCI and therefore, no basis for a tip of the iceberg effect these findings support the theory of a modest functional gradient in the temporal lobes with the ATLs being Involved in the naming of more specific objects (JINS 2010 16, 1099-1107)o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.16610991107Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [2009/02179-2

    Frequent Seizures Are Associated with a Network of Gray Matter Atrophy in Temporal Lobe Epilepsy with or without Hippocampal Sclerosis

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Objective: Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS). Methods: We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures. Results: Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions. Conclusion: Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.91Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2005/56578-4, 2009/54552-9, 2011/03477-7

    A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Although white matter damage may play a major role in the pathogenesis of spinocerebellar ataxia 3 (SCA3), available data rely exclusively upon macrostructural analyses. In this setting we designed a study to investigate white matter integrity. We evaluated 38 genetically-confirmed SCA3 patients (mean age, 52.76 +/- 12.70 years; 21 males) with clinical scales and brain magnetic resonance imaging (MRI) and 38 healthy subjects as a control group (mean age, 48.86 +/- 12.07 years, 20 male). All individuals underwent the same protocol for high-resolution T1 and T2 images and diffusion tensor imaging acquisition (32 directions) in a 3-T scanner. We used Tract-Based Spatial Statistics (FSL 4.1.4) to analyze diffusion data and SPM8/DARTEL for voxel-based morphometry of infratentorial structures. T2-relaxometry of cerebellum was performed with in-house-developed software Aftervoxel and Interactive Volume Segmentation (IVS). Patients' mean age at onset was 40.02 +/- 11.48 years and mean duration of disease was 9.3 +/- 2.7 years. Mean International Cooperative Ataxia Rating Scale (ICARS) and Scale for Assessment and Rating of Ataxia (SARA) scores were 32.08 +/- 4.01 and 14.65 +/- 7.33, respectively. Voxel-based morphometry demonstrated a volumetric reduction of gray and white matter in cerebellum and brainstem (P <.001). We found reduced fractional anisotropy (P <.05) in the cerebellum and brainstem. There were also areas of increased radial diffusivity (P <.05) in the cerebellum, brainstem, thalamus, frontal lobes, and temporal lobes. In addition, we found decreased T2-relaxation values in the white matter of the right cerebellar hemisphere. Microstructural white matter dysfunction, not previously reported, occurs in the cerebellum and brainstem of SCA3 patients. (c) 2013 Movement Disorder Society28811251132Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore