1,370 research outputs found

    Elastase-alpha1-proteinase inhibitor complex

    Get PDF

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice

    Get PDF
    OBJECTIVE: In conditions of continuous high-fat (HF) intake, the degree of saturation of the fatty acids (FAs) in the diet might have a crucial role in the onset of obesity and its metabolic complications. In particular, the FA composition of the diet might influence the storage form of lipids inside skeletal muscle. The aim of the present study was to examine whether the FA composition of HF diets differentially affects weight gain and accumulation of myocellular triacylglycerol (TAG) and diacylglycerol (DAG). Furthermore, we examined whether the FA composition of the diet was reflected in the composition of the myocellular lipid intermediates.DESIGN: C57Bl6 mice were fed HF diets (45% energy) mainly containing palm oil (PO), cocoa butter (CB), olive oil (OO) or safflower oil (SO; n=6 per group) for 8 weeks. A low-fat diet (10% energy, PO) was used as control. Body weight was monitored weekly. At the end of the dietary intervention, myocellular TAG and DAG content and profiles were measured.RESULTS: We here show that HF_CB prevented weight gain after 8 weeks of HF feeding. Furthermore, the HF diet rich in SO prevented the accumulation of both myocellular TAG and DAG. Interestingly, the FA composition of DAG and TAG in skeletal muscle was a reflection of the dietary FA composition.CONCLUSION: Already after a relatively short period, the dietary FA intake relates to the FA composition of the lipid metabolites in the muscle. A diet rich in polyunsaturated FAs seems to prevent myocellular lipid accumulation.<br/

    D-Ribose Induces Cellular Protein Glycation and Impairs Mouse Spatial Cognition

    Get PDF
    BACKGROUND: D-ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in glycation and leads to production of AGEs in vivo still requires investigation. METHODOLOGY/PRINCIPAL FINDINGS: Here we treated cultured cells and mice with D-ribose and D-glucose to compare ribosylation and glucosylation for production of AGEs. Treatment with D-ribose decreased cell viability and induced more AGE accumulation in cells. C57BL/6J mice intraperitoneally injected with D-ribose for 30 days showed high blood levels of glycated proteins and AGEs. Administration of high doses D-ribose also accelerated AGE formation in the mouse brain and induced impairment of spatial learning and memory ability according to the performance in Morris water maze test. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that D-ribose but not D-glucose reacts rapidly with proteins and produces significant amounts of AGEs in both cultured cells and the mouse brain, leading to accumulation of AGEs which may impair mouse spatial cognition

    The Interaction between Regulatory T Cells and NKT Cells in the Liver: A CD1d Bridge Links Innate and Adaptive Immunity

    Get PDF
    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells.The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis.CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury.NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity

    In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    Get PDF
    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases
    corecore