5,330 research outputs found

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Beamtest results of the CBM-TRD feature extraction using SPADIC v1.0

    Get PDF

    Adiabatic population transfer in a three-level system driven by delayed laser pulses

    Get PDF
    We give a simple analytic solution that describes a novel method for population transfer in a three-level system driven by delayed pulses and which accounts for recent experimental results. This solution describes a procedure that is counter intuitive, and yet it is shown to be, in fact, one of the simplest solutions for multilevel systems arising from the adiabatic theorem. Its possible application to many-level systems is suggested

    Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: a thermo-magnetic Curie-switch

    Full text link
    We investigate a novel type of interlayer exchange coupling based on driving a strong/weak/strong ferromagnetic tri-layer through the Curie point of the weakly ferromagnetic spacer, with the exchange coupling between the strongly ferromagnetic outer layers that can be switched, on and off, or varied continuously in magnitude by controlling the temperature of the material. We use Ni-Cu alloy of varied composition as the spacer material and model the effects of proximity-induced magnetism and the interlayer exchange coupling through the spacer from first principles, taking into account not only thermal spin-disorder but also the dependence of the atomic moment of Ni on the nearest-neighbor concentration of the non-magnetic Cu. We propose and demonstrate a gradient-composition spacer, with a lower Ni-concentration at the interfaces, for greatly improved effective-exchange uniformity and significantly improved thermo-magnetic switching in the structure. The reported magnetic multilayer materials can form the base for a variety of novel magnetic devices, such as sensors, oscillators, and memory elements based on thermo-magnetic Curie-switching in the device.Comment: 15 pages, 5 figure

    Optimal quantum control in nanostructures: Theory and application to generic three-level system

    Full text link
    Coherent carrier control in quantum nanostructures is studied within the framework of Optimal Control. We develop a general solution scheme for the optimization of an external control (e.g., lasers pulses), which allows to channel the system's wavefunction between two given states in its most efficient way; physically motivated constraints, such as limited laser resources or population suppression of certain states, can be accounted for through a general cost functional. Using a generic three-level scheme for the quantum system, we demonstrate the applicability of our approach and identify the pertinent calculation and convergence parameters.Comment: 7 pages; to appear in Phys. Rev.

    Measuring the Density Matrix by Local Addressing

    Full text link
    We introduce a procedure to measure the density matrix of a material system. The density matrix is addressed locally in this scheme by applying a sequence of delayed light pulses. The procedure is based on the stimulated Raman adiabatic passage (STIRAP) technique. It is shown that a series of population measurements on the target state of the population transfer process yields unambiguous information about the populations and coherences of the addressed states, which therefore can be determined.Comment: 4 pages, 1 figur

    Broadband adiabatic conversion of light polarization

    Full text link
    A broadband technique for robust adiabatic rotation and conversion of light polarization is proposed. It uses the analogy between the equation describing the polarization state of light propagating through an optically anisotropic medium and the Schrodinger equation describing coherent laser excitation of a three-state atom. The proposed techniques is analogous to the stimulated Raman adiabatic passage (STIRAP) technique in quantum optics; it is applicable to a wide range of frequencies and it is robust to variations in the ropagation length
    corecore