867 research outputs found

    Non-destructive testing of carbon reinforced plastics by means of phase retrieval

    Full text link
    In this work, the SLM-based phase retrieval system will be used to inspect carbon reinforced plastics samples (CFRP) under applying a thermal load. For this purpose, the system is used to capture a sequence of 8 spatially separated recording planes, where the distance between subsequent planes equals 2 mm. For detecting the hidden failures two sets of intensity observations are recorded. The first set for the initial state and the second set is captured after applying the load. To recover the phase information associated with the two states, the captured intensities have been subjected to an iterative algorithm based on the method of generalized projection.Comment: Conf. Speckle 201

    On the Origin of Logarithmic-Normal Distributions: An Analytical Derivation, and its Application to Nucleation and Growth Processes

    Full text link
    The logarithmic-normal (lognormal) distribution is one of the most frequently observed distributions in nature and describes a large number of physical, biological and even sociological phenomena. The origin of this distribution is therefore of broad interest but a general derivation from basic principles is still lacking. Using random nucleation and growth to describe crystallization processes we derive the time development of grain size distributions. Our derivation provides, for the first time, an analytical expression of the size distribution in the form of a lognormal type distribution. We apply our results to the grain size distribution of solid phase crystallized Si-films.Comment: four pages, one figur

    Using integrated knowledge acquisition to prepare sophisticated expert plans for their re-use in novel situations

    Get PDF
    Plans which were constructed by human experts and have been repeatedly executed to the complete satisfaction of some customer in a complex real world domain contain very valuable planning knowledge. In order to make this compiled knowledge re-usable for novel situations, a specific integrated knowledge acquisition method has been developed: First, a domain theory is established from documentation materials or texts, which is then used as the foundation for explaining how the plan achieves the planning goal. Secondly, hierarchically structured problem class definitions are obtained from the practitioners\u27 highlevel problem conceptualizations. The descriptions of these problem classes also provide operationality criteria for the various levels in the hierarchy. A skeletal plan is then constructed for each problem class with an explanation-based learning procedure. These skeletal plans consist of a sequence of general plan elements, so that each plan element can be independently refined. The skeletal plan thus accounts for the interactions between the various concrete operations of the plan at a general level. The complexity of the planning problem is thereby factored in a domain-specific way and the compiled knowledge of sophisticated expert plans can be re-used in novel situations

    Telemedicine Pre and Post Covid-19: Lessons for Commercialisation Based on Previous Use Cases

    Get PDF
    Telemedicine used to be slow, difficult, expensive and widely neglected by doctors and patients. COVID-19 changed everything; telemedicine is entering a period of rapid economic and business growth. This paper discusses the reasons for change in telemedicine over the last 20 years, through real-life medical technology projects, telemetry, ehealth and health IT. Our methods are based on the analysis of telemedicine projects we have implemented and characteristic historical data.  The results of our investigation demonstrate a clear increase of significance in telemedicine in the present and near future. We envision the evolution of mobile phones to personal telehealth monitors.  Prior to COVID-19, market penetration and economic factors of telemedicine evolved slowly and in an uneven manner on a global scale. Many of the projects remained active only as long as the grant or corporate or national support was provided. The age of novel globally spreading infectious diseases, exemplified by COVID-19, has created an unusual, different setting. Recent pandemics and epidemics have changed global economics significantly and generated a new motivation and a new market with a projected trillion-dollar market value. Post COVID-19, regular and periodic epidemics and pandemics are expected to continue to occur. This will generate an enormous global market for isolated high-tech services, including telemedicine and telemetry

    Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW)

    Get PDF
    Wire arc additive manufacturing (WAAM) by gas metal arc welding (GMAW) is a suitable option for the production of large volume metal parts. The main challenge is the high and periodic heat input of the arc on the generated layers, which directly affects geometrical features of the layers such as height and width as well as metallurgical properties such as grain size, solidification or material hardness. Therefore, processing with reduced energy input is necessary. This can be implemented with short arc welding regimes and respectively energy reduced welding processes. A highly efficient strategy for further energy reduction is the adjustment of contact tube to work piece distance (CTWD) during the welding process. Based on the current controlled GMAW process an increase of CTWD leads to a reduction of the welding current due to increased resistivity in the extended electrode and constant voltage of the power source. This study shows the results of systematically adjusted CTWD duringWAAM of low-alloyed steel. Thereby, an energy reduction of up to 40% could be implemented leading to an adaptation of geometrical and microstructural features of additively manufactured work pieces
    corecore