9,234 research outputs found

    Critical point for the strong field magnetoresistance of a normal conductor/perfect insulator/perfect conductor composite with a random columnar microstructure

    Full text link
    A recently developed self-consistent effective medium approximation, for composites with a columnar microstructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and perfect conductor, where a strong magnetic field {\bf B} is present in the plane perpendicular to the columnar axis. When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-induced in-plane magnetoresistance is found to saturate for large {\bf B}, if the volume fraction of the perfect conductor pSp_S is greater than that of the perfect insulator pIp_I. By contrast, if pS<pIp_S<p_I, that magnetoresistance keeps increasing as B2{\bf B}^2 without ever saturating. This abrupt change in the macroscopic response, which occurs when pS=pIp_S=p_I, is a critical point, with the associated critical exponents and scaling behavior that are characteristic of such points. The physical reasons for the singular behavior of the macroscopic response are discussed. A new type of percolation process is apparently involved in this phenomenon.Comment: 4 pages, 1 figur

    Negative Magnetoresistance Produced by Hall Fluctuations in a Ferromagnetic Domain Structure

    Full text link
    We present a model for a negative magnetoresistance (MR) that would develop in a material with many ferromagnetic domains even if the individual domains have no magnetoresistance and even if there is no boundary resistance. The negative MR is due to a classical current-distortion effect arising from spatial variations in the Hall conductivity, combined with a change in domain structure due to an applied magnetic field. The negative MR can exceed 1000% if the product of the carrier relaxation time and the internal magnetic field due to spontaneous magnetization is sufficiently large.Comment: 3 pages, submitted to Appl. Phys. Let

    New Method to Calculate Electrical Forces Acting on a Sphere in an Electrorheological Fluid

    Get PDF
    We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate multi-body as well as pairwise forces. We also present several numerical examples, including host fluids with finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also change sign as a function of frequency when the host is a slightly conducting fluid.Comment: 29 pages, 8 figures, Accepted for Publication in Physical Review

    Magnetoresistance of Three-Constituent Composites: Percolation Near a Critical Line

    Full text link
    Scaling theory, duality symmetry, and numerical simulations of a random network model are used to study the magnetoresistance of a metal/insulator/perfect conductor composite with a disordered columnar microstructure. The phase diagram is found to have a critical line which separates regions of saturating and non-saturating magnetoresistance. The percolation problem which describes this line is a generalization of anisotropic percolation. We locate the percolation threshold and determine the t = s = 1.30 +- 0.02, nu = 4/3 +- 0.02, which are the same as in two-constituent 2D isotropic percolation. We also determine the exponents which characterize the critical dependence on magnetic field, and confirm numerically that nu is independent of anisotropy. We propose and test a complete scaling description of the magnetoresistance in the vicinity of the critical line.Comment: Substantially revised version; description of behavior in finite magnetic fields added. 7 pages, 7 figures, submitted to PR

    Comment on "Optical Response of Strongly Coupled Nanopraticles in Dimer Arrays" (Phys. Rev. B 71(4), 045404, 2005)

    Full text link
    I have re-calculated the extinction spectra of aggregates of two silver nanospheres shown in Figs.~2 and 3 of Ref.~8. I have used the approximate method of images according to Ref.~8 and an exact numerical technique. I have found that the three sets of data (those I have obtained by the method of images, the numerical results, and the results published in Ref.~8) do not coincide. In this Comment, I discuss the reasons for these discrepancies and the general applicability of the method of images to the quasi-static electromagnetic problem of two interacting nanospheres.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Theory of Optical Transmission through Elliptical Nanohole Arrays

    Full text link
    We present a theory which explains (in the quasistatic limit) the experimentally observed [R. Gordon, {\it et al}, Phys. Rev. Lett. {\bf 92}, 037401 (2004)] squared dependence of the depolarization ratio on the aspect ratio of the holes, as well as other features of extraordinary light transition. We calculated the effective dielectric tensor of a metal film penetrated by elliptical cylindrical holes and found the extraordinarily light transmission at special frequencies related to the surface plasmon resonances of the composite film. We also propose to use the magnetic field for getting a strong polarization effect, which depends on the ratio of the cyclotron to plasmon frequencies.Comment: 4 pages, 4 figure

    Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid

    Full text link
    We perform a general study of spin ordering on the pyrochlore lattice with a 3:1 proportionality of two spin polarizations. Equivalently, this describes valence bond solid conformations of a quantum dimer model on the diamond lattice. We determine the set of likely low temperature ordered phases, on the assumption that the ordering is weak, i.e the system is close to a ``U(1)'' quantum spin liquid in which the 3:1 proportionality is maintained but the spins are strongly fluctuating. The nature of the 9 ordered states we find is determined by a ``projective symmetry'' analysis. All the phases exhibit translational and rotational symmetry breaking, with an enlarged unit cell containing 4 to 64 primitive cells of the underlying pyrochlore. The simplest of the 9 phases is the same ``R'' state found earlier in a theoretical study of the ordering on the magnetization plateau in the S=3/2S=3/2 materials \cdaf and \hgaf. We suggest that the spin/dimer model proposed therein undergoes a direct transition from the spin liquid to the R state, and describe a field theory for the universal properties of this critical point, at zero and non-zero temperatures

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

    Full text link
    We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.Comment: Accepted for publication in Astroparticle Physics Journal 16 pages, 9 figure
    corecore