69 research outputs found

    Locked in a vicious cycle: the connection between genomic instability and a loss of protein homeostasis

    Get PDF
    Cardiomyopathies, neuropathies, cancer and accelerated ageing are unequivocally distinct diseases, yet they also show overlapping pathological hallmarks, including a gradual loss of genomic integrity and proteotoxic stress. Recent lines of evidence suggest that this overlap could be the result of remarkably interconnected molecular cascades between nuclear genomic instability and a loss of protein homeostasis. In this review, we discuss these complex connections, as well as their possible impact on disease. We focus in particular on the inherent ability of a wide range of genomic alterations to challenge protein homeostasis. In doing so, we provide evidence suggesting that a loss of protein homeostasis could be a far more prevalent consequence of genomic instability than generally believed. In certain cases, such as aneuploidy, a loss of protein homeostasis appears to be a crucial mechanism for pathology, which indicates that enhancing protein quality control systems could be a promising therapeutic strategy in diseases associated with genomic instability

    Interplay of the Ubiquitin Proteasome System with Nucleotide Excision Repair

    Get PDF
    Dit proefschrift kwam tot stand binnen de vakgroep Celbiologie en Genetica van de faculteit der Geneeskunde en Gezondheidswetenschappen van de Erasmus Universiteit Rotterdam. De vakgroep maakt deel uit van het Medisch Genetisch Centrum Zuid-West Nederland. Het onderzoek is financieel ondersteund door het Center for Biomedical Genetics, de Koninklijke Nederlandse Akademie van Wetenschappen en de Nederlandse Organisatie voor Wetenschappelijk Onderzoek.The genetic information stored in the DNA encodes directly or indirectly for all processes important for life. The nucleic acid order of the DNA is (via RNA) translated into proteins. The various proteins have distinct and vital functions that are important for the catalysis of the distinct processes in our cells, furthermore they function in the structures in and outside our cells as well. During the live cycle of every cell a constant challenge from both exogenous as endogenous sources potentially damages both proteins and DNA. Proteins can be easily be replaced by the synthesis of new ones. In contrast however, DNA as the carrier of information itself cannot be replaced and therefore, damage ne

    DNAJs:more than substrate delivery to HSPA

    Get PDF
    Proteins are essential components of cellular life, as building blocks, but also to guide and execute all cellular processes. Proteins require a three-dimensional folding, which is constantly being challenged by their environment. Challenges including elevated temperatures or redox changes can alter this fold and result in misfolding of proteins or even aggregation. Cells are equipped with several pathways that can deal with protein stress. Together, these pathways are referred to as the protein quality control network. The network comprises degradation and (re)folding pathways that are intertwined due to the sharing of components and by the overlap in affinity for substrates. Here, we will give examples of this sharing and intertwinement of protein degradation and protein folding and discuss how the fate of a substrate is determined. We will focus on the ubiquitylation of substrates and the role of Hsp70 co-chaperones of the DNAJ class in this process

    Genome instability and loss of protein homeostasis:converging paths to neurodegeneration?

    Get PDF
    Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions

    A 128-bit Chip Identification Generating Scheme Exploiting Load Transistors' Variation in SRAM Bitcells

    Get PDF
    textabstractObjective: Women with a history of bipolar disorder or postpartum psychosis are at extremely high risk of relapse postpartum. Although lithium prophylaxis has demonstrated efficacy in reducing postpartum relapse, the timing of prophylaxis remains controversial given the balance of risks and benefits for the mother and fetus. The authors compared lithium use during pregnancy to its initiation postpartum in women at high risk for postpartum psychosis. Method: Between 2003 and 2010, 70 pregnant women at high risk for postpartum psychosis were referred to the authors' psychiatric outpatient clinic. Women who were initially medication free were advised to start lithium prophylaxis immediately postpartum. Women already taking maintenance lithium during pregnancy were advised to continue treatment. Results: All women with a history of psychosis limited to the postpartum perio

    Chaperones in Polyglutamine Aggregation:Beyond the Q-Stretch

    Get PDF
    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level

    Cooling of Cells and Organs Confers Extensive DNA Strand Breaks Through Oxidative Stress and ATP Depletion

    Get PDF
    Cooling at 4 degrees C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, gamma-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures

    FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation

    Get PDF
    FOXO1, a transcription factor downstream of the insulin/insulin like growth factor axis, has been linked to protein degradation. Elevated expression of FOXO orthologs can also prevent the aggregation of cytosine adenine guanine (CAG)-repeat disease causing polyglutamine (polyQ) proteins but whether FOXO1 targets mutant proteins for degradation is unclear. Here, we show that increased expression of FOXO1 prevents toxic polyQ aggregation in human cells while reducing FOXO1 levels has the opposite effect and accelerates it. Although FOXO1 indeed stimulates autophagy, its effect on polyQ aggregation is independent of autophagy, ubiquitin–proteasome system (UPS) mediated protein degradation and is not due to a change in mutant polyQ protein turnover. Instead, FOXO1 specifically downregulates protein synthesis rates from expanded pathogenic CAG repeat transcripts. FOXO1 orchestrates a change in the composition of proteins that occupy mutant expanded CAG transcripts, including the recruitment of IGF2BP3. This mRNA binding protein enables a FOXO1 driven decrease in pathogenic expanded CAG transcript- and protein levels, thereby reducing the initiation of amyloidogenesis. Our data thus demonstrate that FOXO1 not only preserves protein homeostasis at multiple levels, but also reduces the accumulation of aberrant RNA species that may co-contribute to the toxicity in CAG-repeat diseases

    Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks

    Get PDF
    BAG3 is a multi-domain hub that connects two classes of chaperones, small heat shock proteins (sHSPs) via two isoleucine-proline-valine (IPV) motifs and Hsp70 via a BAG domain.\ua0Mutations in either the IPV or BAG domain of BAG3 cause a dominant form of myopathy, characterized by protein aggregation in both skeletal and cardiac muscle tissues. Surprisingly, for both disease mutants, impaired chaperone binding is not sufficient to explain disease phenotypes. Recombinant mutants are correctly folded, show unaffected Hsp70 binding but are impaired in stimulating Hsp70-dependent client processing. As a consequence, the mutant BAG3 proteins become the node for a dominant gain of function causing aggregation of itself, Hsp70, Hsp70 clients and tiered interactors within the BAG3 interactome. Importantly, genetic and pharmaceutical interference with Hsp70 binding completely reverses stress-induced protein aggregation for both BAG3 mutations. Thus, the gain of function effects of BAG3 mutants act as Achilles heel of the HSP70 machinery

    Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome

    Get PDF
    A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies
    • …
    corecore