55 research outputs found

    Fibrillar Aβ (beta) triggers microglial proteome alterations and dysfunction in Alzheimer mouse models

    Get PDF
    Microglial dysfunction is a key pathological feature of Alzheimer's disease (AD), but little is known about proteome-wide changes in microglia during the course of AD and their functional consequences. Here, we performed an in-depth and time-resolved proteomic characterization of microglia in two mouse models of amyloid beta (A beta) pathology, the overexpression APPPS1 and the knock-in APP-NL-G-F (APP-KI) model. We identified a large panel of Microglial A beta Response Proteins (MARPs) that reflect heterogeneity of microglial alterations during early, middle and advanced stages of A beta deposition and occur earlier in the APPPS1 mice. Strikingly, the kinetic differences in proteomic profiles correlated with the presence of fibrillar A beta, rather than dystrophic neurites, suggesting that fibrillar A beta may trigger the AD-associated microglial phenotype and the observed functional decline. The identified microglial proteomic fingerprints of AD provide a valuable resource for functional studies of novel molecular targets and potential biomarkers for monitoring AD progression or therapeutic efficacy

    Using canned explanations within a mobile context engine

    No full text
    Mobile applications have to adhere to many constraints. ContextEngine has been developed for the Android platform to easier deal with such limitations and situation-specific information across applications to, thus, create context-aware, mobile systems. With the increased adaptability and dynamics of context-aware applications comes an increase complexity, which in turn makes it harder to understand the behaviour of such applications. In this paper we describe how we enhanced the ContextEngine platform with explanation capabilities. Explaining can be seen as complex reasoning task on its own. Here, we focus on “canned explanations”. Canned explanations are information artefacts, pre-formulated by the software engineer, that serve as explanatory artefacts stored in the system and delivered to the user on demand

    Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model

    No full text
    Amyloid-β (Aβ) deposition is an initiating factor in Alzheimer’s disease (AD). Microglia are the brain immune cells that surround and phagocytose Aβ plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aβ targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aβ plaque load, Aβ plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aβ plaques, we observed a more ramified morphology of Aβ plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aβ plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aβ targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention

    Additional file 2 of Breast cancer risks associated with missense variants in breast cancer susceptibility genes

    No full text
    Additional file 2
    • …
    corecore