28 research outputs found

    The ERCC6 Gene and Age-Related Macular Degeneration

    Get PDF
    Background: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the developed countries and is caused by both environmental and genetic factors. A recent study (Tuo et al., PNAS) reported an association between AMD and a single nucleotide polymorphism (SNP) (rs3793784) in the ERCC6 (NM_000124) gene. The risk allele also increased ERCC6 expression. ERCC6 is involved in DNA repair and mutations in ERCC6 cause Cockayne syndrome (CS). Amongst others, photosensitivity and pigmentary retinopathy are hallmarks of CS. Methodology/Principal Findings: Separate and combined data from three large AMD case-control studies and a prospective population-based study (The Rotterdam Study) were used to analyse the genetic association between ERCC6 and AMD (2682 AMD cases and 3152 controls). We also measured ERCC6 mRNA levels in retinal pigment epithelium (RPE) cells of healthy and early AMD affected human donor eyes. Rs3793784 conferred a small increase in risk for late AMD in the Dutch population (The Rotterdam and AMRO-NL study), but this was not replicated in two non-European studies (AREDS, Columbia University). In addition, the AMRO-NL study revealed no significant association for 9 other variants spanning ERCC6. Finally, we determined that ERCC6 expression in the human RPE did not depend on rs3793784 genotype, but, interestingly, on AMD status: Early AMD-affected donor eyes had a 50% lower ERCC6 expression than healthy donor eyes (P = 0.018). Conclusions/Significance: Our meta analysis of four Caucasian cohorts does not replicate the reported association between SNPs in ERCC6 and AMD. Nevertheless, our findings on ERCC6 expression in the RPE suggest that ERCC6 may be functionally involved in AMD. Combining our data with those of the literature, we hypothesize that the AMD-related reduced transcriptional activity of ERCC6 may be caused by diverse, small and heterogeneous genetic and/or environmental determinants

    Genome-wide analyses identify common variants associated with macular telangiectasia type 2

    Get PDF
    Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10−8) were identified at three independent loci (rs73171800 at 5q14.3, P = 7.74 × 10−17; rs715 at 2q34, P = 9.97 × 10−14; rs477992 at 1p12, P = 2.60 × 10−12) and then replicated (P < 0.01) in an independent cohort of 172 cases and 1,134 controls. The 5q14.3 locus is known to associate with variation in retinal vascular diameter, and the 2q34 and 1p12 loci have been implicated in the glycine/serine metabolic pathway. We subsequently found significant differences in blood serum levels of glycine (P = 4.04 × 10−6) and serine (P = 2.48 × 10−4) between MacTel cases and controls

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF

    10 mM glucosamine prevents activation of proADAMTS5 (aggrecanase-2) in transfected cells by interference with post-translational modification of furin

    Get PDF
    ObjectiveGlucosamine has been previously shown to suppress cartilage aggrecan catabolism in explant cultures. We determined the effect of glucosamine on ADAMTS5 (a disintegrin-like and metalloprotease domain (reprolysin type) with thrombospondin type-1 motifs 5), a major aggrecanase in osteoarthritis, and investigated a potential mechanism underlying the observed effects.DesignHEK293F and CHO-K1 cells transiently transfected with ADAMTS5 cDNA were treated with glucosamine or the related hexosamine mannosamine. Glucosamine effects on FURIN transcription were determined by quantitative RT-PCR. Effects on furin-mediated processing of ADAMTS5 zymogen, and aggrecan processing by glucosamine-treated cells, were determined by western blotting. Post-translational modification of furin and N-glycan deficient furin mutants generated by site-directed mutagenesis was analyzed by western blotting, and the mutants were evaluated for their ADAMTS5 processing ability in furin-deficient CHO-RPE.40 cells.ResultsTen mM glucosamine and 5&ndash;10 mM mannosamine reduced excision of the ADAMTS5 propeptide, indicating interference with the propeptide excision mechanism, although mannosamine compromised cell viability at these doses. Although glucosamine had no effect on furin mRNA levels, western blot of furin from glucosamine-treated cells suggested altered post-translational modification. Glucosamine treatment led to decreased glycosylation of cellular furin, with reduced furin autoactivation as the consequence. Recombinant furin treated with peptide N-glycanase F had reduced activity against a synthetic peptide substrate. Indeed, site-directed mutagenesis of two furin N-glycosylation sites, Asn387 and Asn440, abrogated furin activation and this mutant was unable to rescue ADAMTS5 processing in furin-deficient cells.ConclusionsTen mM glucosamine reduces excision of the ADAMTS5 propeptide via interference with post-translational modification of furin and leads to reduced aggrecanase activity of ADAMTS5.<br /

    Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people

    Get PDF
    Variation in the apolipoprotein E gene (APOE) has been reported to be associated with longevity in humans. The authors assessed the allelic distribution of APOE isoforms ?2, ?3, and ?4 among 10,623 participants from 15 case-control and cohort studies of age-related macular degeneration (AMD) in populations of European ancestry (study dates ranged from 1990 to 2009). The authors included only the 10,623 control subjects from these studies who were classified as having no evidence of AMD, since variation within the APOE gene has previously been associated with AMD. In an analysis stratified by study center, gender, and smoking status, there was a decreasing frequency of the APOE ?4 isoform with increasing age (?(2) for trend = 14.9 (1 df); P = 0.0001), with a concomitant increase in the ?3 isoform (?(2) for trend = 11.3 (1 df); P = 0.001). The association with age was strongest in ?4 homozygotes; the frequency of ?4 homozygosity decreased from 2.7% for participants aged 60 years or less to 0.8% for those over age 85 years, while the proportion of participants with the ?3/?4 genotype decreased from 26.8% to 17.5% across the same age range. Gender had no significant effect on the isoform frequencies. This study provides strong support for an association of the APOE gene with human longevit

    Multilocus analysis of age-related macular degeneration

    No full text
    Age-related macular degeneration (AMD) is a late onset vision disorder. Recent studies demonstrate that alterations in complement cascade genes are associated with AMD. Of the three identified complement loci, variants in complement factor H (CFH) have the highest impact as does an independent locus at 10q26. Our matched case–control study using the Age-Related Eye Disease Study (AREDS) cohort confirms and extends the associations in these loci. Subjects were genotyped for single nucleotide polymorphisms (SNPs) from CFH, complement component 2 (C2), complement component 3 (C3), complement factor B (CFB), age-related maculopathy susceptibility (ARMS2), HtrA serine peptidase 1 (HTRA1), and apolipoprotein E (APOE). Individual SNPs, and haplotypes showed risk trends consistent with those seen in other population studies for CFH, C3, C2, and CFB. SNP rs10490924 on chromosome 10 in exon 1 of the ARMS2 gene showed a highly significant association with an odds ratio (OR) of 3.2 (95% CI 2.4–4.2) for the risk allele and rs11200638 located in the proximal promoter region of HTRA1 showed a higher significant association with an OR of 3.4 (95% CI 2.5–4.6) with our AMD cases. We found that APOE haplotypes were not significantly associated with disease status. Adjustments for other risk factors did not significantly alter the observed associations. This study validates the complement pathway's involvement in AMD and suggests that allelic variants in complement genes have a direct role in disease. These results also support previous findings that variants in the region of 10q26 exert an independent risk for AMD
    corecore