658 research outputs found

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    Mass formulas and thermodynamic treatment in the mass-density-dependent model of strange quark matter

    Full text link
    The previous treatments for strange quark matter in the quark mass-density-dependent model have unreasonable vacuum limits. We provide a method to obtain the quark mass parametrizations and give a self-consistent thermodynamic treatment which includes the MIT bag model as an extreme. In this treatment, strange quark matter in bulk still has the possibility of absolute stability. However, the lower density behavior of the sound velocity is opposite to previous findings.Comment: Formatted in REVTeX 3.1, 5 pages, 3 figures, to appear in PRC6

    Evaluating Microcounseling Training

    Full text link
    An evaluation research design was developed as an attempt to provide a more satisfactory approach to microcounseling training program evaluation. Trainee performance was measured three times during a counseling practicum, with microcounseling training occurring between the second and third observations. Trainee performance was compared to a predetermined standard for counselor behavior. Results were analyzed for both the differences between observations, and the degree of similarity to the model. Counseling behavior of trainees after microcounseling training was significantly different from their behavior prior to the training. After training they were more like the standard. The trainees performed less like the standard after some counseling experience, but before receiving microcounseling training.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66901/2/10.1177_0193841X8300700206.pd

    A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 2011 February 15 X2.2 flare

    Full text link
    The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 2011 February 15. Here we analyze SDO/HMI magnetograms covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with this flare, including the abrupt changes in the field vector, vertical electric current and Lorentz force vector. We also trace these parameters' temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in total flux at the neutral line was accompanied by a compensating flux decrease in the surrounding volume. In the two sunspots near the neutral line the azimuthal flux abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz force change during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces. The shearing forces were consistent with field contraction and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the flux collapsing towards the neutral line from the surrounding volume.Comment: DOI 10.1007/s11207-012-0071-0. Accepted for publication in Solar Physics SDO3 Topical Issue. Some graphics missing due to 15MB limi

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Statefinder Parameter for Varying G in Three Fluid System

    Full text link
    In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant GG. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    The emergence of a new source of X-rays from the binary neutron star merger GW170817

    Get PDF
    The binary neutron-star (BNS) merger GW170817 is the first celestial object from which both gravitational waves (GWs) and light have been detected enabling critical insight on the pre-merger (GWs) and post-merger (light) physical properties of these phenomena. For the first 3\sim 3 years after the merger the detected radio and X-ray radiation has been dominated by emission from a structured relativistic jet initially pointing 1525\sim 15-25 degrees away from our line of sight and propagating into a low-density medium. Here we report on observational evidence for the emergence of a new X-ray emission component at δt>900\delta t>900 days after the merger. The new component has luminosity Lx5×1038ergs1L_x \approx 5\times 10^{38}\rm{erg s^{-1}} at 1234 days, and represents a 3.5σ\sim 3.5\sigma - 4.3σ4.3\sigma excess compared to the expectations from the off-axis jet model that best fits the multi-wavelength afterglow of GW170817 at earlier times. A lack of detectable radio emission at 3 GHz around the same time suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with synchrotron emission from a mildly relativistic shock generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this context our simulations show that the X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. However, radiation from accretion processes on the compact-object remnant represents a viable alternative to the kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission have been observed before.Comment: 66 pages, 12 figures, Submitte

    Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent than Others?

    Full text link
    Multiple recent investigations of solar magnetic field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17,733 magnetograms in total) observed by SOHO's Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i) a widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii) a lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately,for major solar-flare prediction.Comment: 25 pages, 7 figures, 2 tables, Solar Phys., in pres

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore