41,899 research outputs found
Production of a Prompt Photon in Association with Charm at Next-to-Leading Order in QCD
A second order, , calculation in perturbative quantum
chromodynamics of the two particle inclusive cross section is presented for the
reaction for large values of the
transverse momentum of the prompt photon and charm quark. The combination of
analytic and Monte Carlo integration methods used here to perform phase-space
integrations facilitates imposition of photon isolation restrictions and other
selections of relevance in experiments. Differential distributions are provided
for various observables. Positive correlations in rapidity are predicted.Comment: 27 pages in RevTex plus 14 figures in one compressed PS fil
Harmonically trapped fermions in two dimensions: ground-state energy and contact of SU(2) and SU(4) systems via nonuniform lattice Monte Carlo
We study harmonically trapped, unpolarized fermion systems with attractive
interactions in two spatial dimensions with spin degeneracies Nf = 2 and 4 and
N/Nf = 1, 3, 5, and 7 particles per flavor. We carry out our calculations using
our recently proposed quantum Monte Carlo method on a nonuniform lattice. We
report on the ground-state energy and contact for a range of couplings, as
determined by the binding energy of the two-body system, and show explicitly
how the physics of the Nf-body sector dominates as the coupling is increased.Comment: 5 pages, 4 figure
Preconditioned fully implicit PDE solvers for monument conservation
Mathematical models for the description, in a quantitative way, of the
damages induced on the monuments by the action of specific pollutants are often
systems of nonlinear, possibly degenerate, parabolic equations. Although some
the asymptotic properties of the solutions are known, for a short window of
time, one needs a numerical approximation scheme in order to have a
quantitative forecast at any time of interest. In this paper a fully implicit
numerical method is proposed, analyzed and numerically tested for parabolic
equations of porous media type and on a systems of two PDEs that models the
sulfation of marble in monuments. Due to the nonlinear nature of the underlying
mathematical model, the use of a fixed point scheme is required and every step
implies the solution of large, locally structured, linear systems. A special
effort is devoted to the spectral analysis of the relevant matrices and to the
design of appropriate iterative or multi-iterative solvers, with special
attention to preconditioned Krylov methods and to multigrid procedures.
Numerical experiments for the validation of the analysis complement this
contribution.Comment: 26 pages, 13 figure
New camera tube improves ultrasonic inspection system
Electron multiplier, incorporated into the camera tube of an ultrasonic imaging system, improves resolution, effectively shields low level circuits, and provides a high level signal input to the television camera. It is effective for inspection of metallic materials for bonds, voids, and homogeneity
Observing the Odderon: Tensor Meson Photoproduction
We calculate high-energy photoproduction of the tensor meson by
odderon and photon exchange in the reaction , where X is either the nucleon or the sum of the N(1520) and N(1535)
baryon resonances. Odderon exchange dominates except at very small transverse
momentum, and we find a cross section of about 20 nb at a centre-of-mass energy
of 20 GeV. This result is compared with what is currently known experimentally
about photoproduction. We conclude that odderon exchange is not ruled out
by present data. On the contrary, an odderon-induced cross section of the above
magnitude may help to explain a puzzling result observed by the E687
experiment.Comment: 19 pages, 11 figure
Isolated Prompt Photon Production in Hadronic Final States of Annihilation
We provide complete analytic expressions for the isolated prompt photon
production cross section in annihilation reactions through one-loop
order in quantum chromodynamics (QCD) perturbation theory. Functional
dependences on the isolation cone size and isolation energy parameter
are derived. The energy dependence as well as the full angular
dependence of the cross section on are displayed, where
specifies the direction of the photon with respect to the
collision axis. We point out that conventional perturbative QCD
factorization breaks down for isolated photon production in
annihilation reactions in a specific region of phase space. We discuss the
implications of this breakdown for the extraction of fragmentation functions
from annihilation data and for computations of prompt photon
production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one
compressed fil
Electronic transport in quantum cascade structures
The transport in complex multiple quantum well heterostructures is
theoretically described. The model is focused on quantum cascade detectors,
which represent an exciting challenge due to the complexity of the structure
containing 7 or 8 quantum wells of different widths. Electronic transport can
be fully described without any adjustable parameter. Diffusion from one subband
to another is calculated with a standard electron-optical phonon hamiltonian,
and the electronic transport results from a parallel flow of electrons using
all the possible paths through the different subbands. Finally, the resistance
of such a complex device is given by a simple expression, with an excellent
agreement with experimental results. This relation involves the sum of
transitions rates between subbands, from one period of the device to the next
one. This relation appears as an Einstein relation adapted to the case of
complex multiple quantum structures.Comment: 6 pages, 5 figures, 1 tabl
Evolution of the Fermi surface of BiTeCl with pressure
We report measurements of Shubnikov-de Haas oscillations in the giant Rashba
semiconductor BiTeCl under applied pressures up to ~2.5 GPa. We observe two
distinct oscillation frequencies, corresponding to the Rashba-split inner and
outer Fermi surfaces. BiTeCl has a conduction band bottom that is split into
two sub-bands due to the strong Rashba coupling, resulting in two
spin-polarized conduction bands as well as a Dirac point. Our results suggest
that the chemical potential lies above this Dirac point, giving rise to two
Fermi surfaces. We use a simple two-band model to understand the pressure
dependence of our sample parameters. Comparing our results on BiTeCl to
previous results on BiTeI, we observe similar trends in both the chemical
potential and the Rashba splitting with pressure.Comment: 6 pages, 5 figure
Spatio-Temporal Scaling of Solar Surface Flows
The Sun provides an excellent natural laboratory for nonlinear phenomena. We
use motions of magnetic bright points on the solar surface, at the smallest
scales yet observed, to study the small scale dynamics of the photospheric
plasma. The paths of the bright points are analyzed within a continuous time
random walk framework. Their spatial and temporal scaling suggest that the
observed motions are the walks of imperfectly correlated tracers on a turbulent
fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
Band Mapping in One-Step Photoemission Theory: Multi-Bloch-Wave Structure of Final States and Interference Effects
A novel Bloch-waves based one-step theory of photoemission is developed
within the augmented plane wave formalism. Implications of multi-Bloch-wave
structure of photoelectron final states for band mapping are established.
Interference between Bloch components of initial and final states leads to
prominent spectral features with characteristic frequency dispersion
experimentally observed in VSe_2 and TiTe_2. Interference effects together with
a non-free-electron nature of final states strongly limit the applicability of
the common direct transitions band mapping approach, making the tool of
one-step analysis indispensable.Comment: 4 jpg figure
- …