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Harmonically trapped fermions in two dimensions: Ground-state energy and contact of SU(2) and
SU(4) systems via a nonuniform lattice Monte Carlo method
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We study harmonically trapped, unpolarized fermion systems with attractive interactions in two spatial
dimensions with spin degeneracies Nf = 2 and 4 and N/Nf = 1, 3, 5, and 7 particles per flavor. We carry
out our calculations using our recently proposed quantum Monte Carlo method on a nonuniform lattice. We
report on the ground-state energy and contact for a range of couplings, as determined by the binding energy of
the two-body system, and show explicitly how the physics of the Nf -body sector dominates as the coupling is
increased.
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I. INTRODUCTION

In the past year, there have been multiple reports on exper-
iments with ultracold fermionic atoms in constrained, quasi-
two-dimensional optical traps. For instance, the Berezinskii-
Kosterlitz-Thouless superfluid transition [1] was observed in
Refs. [2,3], and the finite-temperature thermodynamics was
studied in Refs. [4,5]. The first realization of two-dimensional
(2D) systems was in fact reported only a few years ago in
[6,7], and since then multiple efforts followed, such as radio
frequency spectroscopy [8,9], studies of dimensional crossover
[10,11], polarons [12], density distribution [13], viscosity [14],
Tan’s contact [15], ground-state pressure [16], and polarized
systems [17] (see also [18,19]).

Experiments continue to move forward at an exciting
pace, and consistent advances are seen on the theory side
as well. Early analytic studies considered pairing in the 2D
Bose-Einstein condensation and Bardeen-Cooper-Schrieffer
crossover at the mean-field level [20–22]. The ground-state
equation of state was obtained in an ab initio fashion only in
2011, in Ref. [23]. Reference [24] followed up with a more
detailed first-principles study of the ground state where the
pressure, contact, pairing properties, and condensate fraction
were determined. The thermal equation of state was first
computed in Ref. [25] in the virial expansion, and in the
Luttinger-Ward approach in Ref. [26]. Pair correlations were
investigated in Ref. [27] in dilute, high-temperature regimes
using the virial expansion, and in Ref. [28], which also
analyzed Tan’s contact. The work of Refs. [29–31] studied
collective modes, while the shear viscosity and spin diffusion
were calculated in Ref. [32]. Finite-temperature quantum
Monte Carlo calculations characterized the density, pressure,
compressibility, and contact more recently in Ref. [33], and
a comparison between theory and experiment was carried out
in [34].

The present work aims to complement some of the
above computational studies by reporting our Monte Carlo
calculations of the ground-state energy and contact of 2D
fermions in a harmonic oscillator (HO) trap. Our calculations
were performed in a nonuniform lattice, a technique put
forward in Ref. [35]. We study spin degeneracies Nf = 2 and
4 and unpolarized systems of N particles for N/Nf = 1,3,5,7.
In this first paper we do not study higher values of Nf ,

although such calculations are certainly feasible with the same
methods. This is particularly interesting given the progress
in the experimental realization of SU(Nf )-symmetric systems
in the last few years, in particular in the presence of optical
lattices [36]. Moreover, experiments involving a small number
of atoms have been achieved as well [37], and for those
experiments, if ever carried out in 2D, the present work
represents a prediction (see [38] for a recent review).

II. HAMILTONIAN AND MANY-BODY METHOD

As mentioned above, we focus here on a 2D system
of Nf fermion species, attractively interacting via pairwise
interactions. The full Hamiltonian in second quantization
form is

Ĥ = T̂ + V̂ext + V̂int, (1)

where

T̂ =
Nf∑
s=1

∫
d2p

(
p2

2m

)
n̂s(p) (2)

is the kinetic energy operator,

V̂ext =
Nf∑
s=1

∫
d2x

(
1

2
mω2x2

)
n̂s(x) (3)

is the external potential energy operator, and

V̂int = −g

2

∑
s �=s ′

∫
d2x n̂s(x)n̂s ′ (x) (4)

is the two-body interaction operator. In the above equations,
n̂s(p) and n̂s(x) are, respectively, the particle-density operators
in coordinate and momentum space for species s, and we have
included an overall factor of 1/2 to avoid overcounting in the
flavor sum.

As in Ref. [35], but now in 2D, we place the system in a
discretized space of Nx × Nx points using the Gauss-Hermite
lattice {xi,yj } and weights {wi,wj } of Gaussian quadratures
in each direction to define such a lattice [39]. The discretized
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form of the interaction then becomes

V̂int = − g

2

∑
s �=s ′

Nx∑
i,j=1

wiwje
x2

i +y2
j n̂s,(i,j )n̂s ′,(i,j ), (5)

where n̂s,(i,j ) is the lattice density operator for spin s at position
(i,j ). Thus, we obtain a position-dependent coupling constant
g(xi,yj ) = gwiwje

x2
i +y2

j .
Following the usual path of the lattice Monte Carlo

formalism, we then approximate the Boltzmann weight using
a symmetric Suzuki-Trotter decomposition:

e−τĤ = e−τ/2(T̂ +V̂ext)e−τ V̂inte−τ/2(T̂ +V̂ext) + O(τ 3), (6)

for some small temporal discretization parameter τ (which
below we take to be τ = 0.05 in lattice units). This dis-
cretization of imaginary time results in a temporal lattice of
extent Nτ , which we also refer to below in terms of β = τNτ

and in dimensionless form as βω. A Hubbard-Stratonovich
transformation [40] of the interaction factor is then used to
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FIG. 1. Ground-state energy per particle of six spin-1/2 fermions
(top figure) and 12 spin-3/2 fermions (bottom figure) harmonically
trapped in 2D as a function of the coupling strength 2aHO/a0 for
four different lattice sizes Nx = 10,20,30,40. The error bars reflect
the statistical uncertainty. The exact result at 2aHO/a0 = 0, i.e., for
the noninteracting case, for spin-1/2 is E/(�ωN ) = 5/3, but the
approach is logarithmic, which explains the peaklike structure at very
weak coupling (see figures below).

represent the interaction using an auxiliary field (see, e.g.,
[41]), which results in a field-integral form of the left-hand
side of Eq. (6). We use that form combined with the power-
projection method [42] to obtain ground-state properties of
the system, using a Slater determinant of HO single-particle
orbitals as a trial wave function.

As in our previous work, we tune the system to specific
physical points by way of the 2D scattering length a0 between
any two different species. We present a0 everywhere in units
of the HO length scale aHO (which is 1 in our units, such
that ω = 1/a2

HO = 1). To this end, we computed the ground-
state energy EGS of the two-body problem and matched it
to that of the continuum solution, for which the relationship
between EGS and the scattering length is well known (see, e.g.,
Ref. [43]). We used this renormalization procedure for each
lattice size, and then proceeded to higher particle numbers
using the coupling thus determined. To illustrate the success of
the procedure, we show the results for the unpolarized spin-1/2
six-body problem in Fig. 1 for several lattice sizes. As can be
appreciated in that figure, the finite-size effects are vanishingly
small for Nf = 2. The same holds for Nf = 4, but only in the
weakly coupled regime 2aHO/a0 < 0.6. To account for these
effects in the strong-coupling regime of the Nf = 4 case, we
used Nx = 40.

III. ANALYSIS AND RESULTS

In this section we present our results for the energy per
particle and Tan’s contact. In all of our tests, as illustrated in
the previous section, the lattice-size effects were very small.
However, increasing Nf effectively enhances the attractive
interaction, such that bound states become even more deeply
bound, which in turn amplifies lattice-spacing effects (see
also Ref. [44]). For this reason, we do not consider Nf > 4
in this work. As a compromise with the computational cost
of running the calculations, we chose to fix Nx = 10 for
Nf = 2 and Nx = 40 for Nf = 4, and explore a range of
values of N/Nf . To minimize statistical effects, we took 104

decorrelated samples of the auxiliary field σ , which results in
a statistical uncertainty of order 1%.

A. Ground-state energy

In Fig. 2 we show our results for the ground-state energy
of systems with Nf = 2 and 4. For each flavor number, we
studied systems with N/Nf = 1, 3, 5, and 7 particles per
flavor. In all cases, as evident from the figures, the energy per
particle monotonically increases when the particle number
is increased, which seems to indicate that no new N -body
bound states appear for N > Nf (i.e., other than the one at
N/Nf = 1). Likewise, in all cases we find that, at fixed Nf , the
energy per particle heals to the energy of the N/Nf = 1 case,
i.e., it is dominated by the Nf -body bound-state contribution.
To see this in more detail, we show the energy again in
Fig. 3, where we have subtracted the energy per particle of
the N/Nf = 1 case from that of the N/Nf = 3,5,7 cases. At
strong coupling that energy difference falls below the energy
per particle of the system (somewhat more noisily in the
Nf = 4 case than for Nf = 2), which shows that the Nf -body
bound-state energy dominates the picture. While qualitatively
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FIG. 2. Ground-state energy of Nf = 2 (top) and 4 (bottom)
species of harmonically trapped fermions in 2D as a function of the
coupling strength 2aHO/a0, for particle numbers N/Nf = 1,3,5,7
(from bottom to top). The error bars reflect the statistical uncertainty.
The inset shows the (logarithmic) approach to the noninteracting
limit. For Nf = 2 the exact values of EGS/N in the noninteracting
limit are (from bottom to top) 1, 5/3, 12/5, and 3.

this is not an unexpected result, our calculations show it in a
quantitatively clear fashion. Furthermore, this suggests that,
for each Nf , no new N -body bound states appear beyond the
N = Nf case.

B. Tan’s contact

Besides the ground-state energy, one of the most interesting
quantities in many-body systems with short-range interactions
is Tan’s contact [45,46]. This quantity is thermodynamically
conjugate to the renormalized coupling, as shown by several
authors [47–49]. Indeed, one way to find it is to determine the
change in the energy with the scattering length (which is often
referred to as the “adiabatic theorem”). Early on, it was shown
by Tan that the contact determines the high-momentum tail
of the momentum distribution, and this was soon afterwards
associated with the operator-product expansion of high-energy
physics [50], and since then several authors have derived exact
results in the form of sum rules for response functions and high-
energy or short-distance behavior of correlation functions.
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FIG. 3. Energy per particle difference, taking N/Nf = 1 as a
reference, for Nf = 2 and Nf = 4 species of harmonically trapped
fermions in 2D as a function of the coupling strength 2aHO/a0, and
for particle numbers N/Nf = 3,5,7 (from bottom to top).

Because our calculations used a contact interaction, the de-
termination of the contact is essentially given by differentiation
of the ground-state energy with respect to the bare coupling.
Indeed, according to the adiabatic theorem in 2D [48,51],

C = 2π
∂EGS

∂ ln(a0/aHO)
= 2π〈V̂ 〉 ∂ ln g

∂ ln(a0/aHO)
, (7)

i.e., computing C reduces to finding the ground-state expecta-
tion value of the potential energy operator V̂ in the many-body
problem, as the remaining factor is entirely due to two-body
physics. The same is true in the present ground-state approach.

Our results for C are shown in Fig. 4, where we compare the
contact per particle C/N for Nf = 2 and 4 with the two-body
result. While at weak couplings the Nf = 4 result is above the
two-body answer, we find that both Nf = 2 and 4 appear to
approach that answer at strong coupling. This indicates that,
in absence of a better guess, one may safely use the two-body
contact in the many-body problem at strong coupling, even as
Nf is increased.
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FIG. 4. Ground-state contact per particle of Nf = 2 (top) and 4
(bottom) species of harmonically trapped fermions in 2D, in units of
the HO frequency ω, as a function of the coupling strength 2aHO/a0,
for particle numbers N/Nf = 1,3,5,7. The solid line shows, as a
reference, the two-body result for Nf = 2.

IV. SUMMARY AND CONCLUSIONS

We used our recently proposed method of nonuniform
lattice quantum Monte Carlo to analyze the behavior of few-
to many-body systems of fermions in a two-dimensional

harmonic trap. We explored systems of Nf = 2 and 4 flavors
and up to N/Nf = 7 particles per flavor and focused on two
experimentally measurable quantities: the ground-state energy
and Tan’s contact. While higher values of Nf are possible, we
have determined that finite-size effects can be sizable when Nf

is increased (although they appear to be vanishingly small for
the systems studied here). Previous work (e.g., [25] or [52])
studied the exact spectrum of the three-body problem in 2D;
our work complements and extends those approaches (though
restricting ourselves to the ground state only). As harmonically
trapped 2D systems are under intense experimental study at the
moment, calculations of these basic quantities are timely [38].
Future 2D experiments with large-Nf atoms can be expected,
for which our results are a prediction [36].

We find that the ground-state energy per particle shows
no qualitative difference for Nf = 2 and 4: it increases
monotonically for all the couplings we studied when the
particle number per flavor N/Nf is increased. On the other
hand, at fixed N/Nf , increasing the number of flavors leads to
a decrease in the energy, as expected. In all cases, the energy is
largely dominated by the Nf -body bound state as the coupling
is increased. As the attractive interaction is thus enhanced by
the addition of fermion species, a natural question is whether
new bound states arise as Nf is increased (i.e., beyond the
one at N/Nf = 1). We find that this is not the case; likely
the appearance of new bound states requires a finite-range
interaction, as is the case in 1D (see, e.g., [53]).
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M. Köhl, Phys. Rev. Lett. 106, 105301 (2011).
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[15] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, M. Köhl, C.
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