3,110 research outputs found

    Activity of Novel Tryptophan Analogs against Mammalian and Trypanosomal Monoamine Oxidases

    Get PDF
    Monoamine oxidases were assayed in live Trypanosoma brucei brucei and in trypanosomal homogenate using the oxygen electrode method. Serotonin and tryptamine were used as standard monomine oxidase A and B substrates, respectively. The ability of live trypanosomes to metabolize tryptamine and serotonin was also monitored by the more sensitive high performance liquid chromatography method. No measurable enzyme activity could be detected in either live trypanosomes or trypanosomal cell homogenates. These results obtained suggest that T. b. brucei do not possess monoamine oxidase activity. Thus trypanocidal tryptophan analogs that were previously thought to act through inhibition of monoamine metabolizing enzymes may be acting by a diferent mechanism. The activity of these tryptophan analogs against mammalian MAO was tested to establish their potential toxicity in man. Two compounds, 5-(1-benzenesulphonylindol-2-ylidene)-5-methoxy-3-ethyl-thiazolidene-2-thione and 5-(1-benzenesulphonylindol-2-ylidene)-3- methylthiazolidine-2-thione had significant activity against mammalian monoamine oxidase. The enzyme kinetics for the latter was also derived. Key words: Trypanosoma brucei brucei, monoamine oxidase, tryptophan metabolites. East and Central African Journal of Pharmaceutical Sciences Vol.6(2) 2003: 43-4

    Application and evaluation of direct sparse visual odometry in marine vessels

    Get PDF
    With the international community pushing for a computer vision based option to the laws requiring a look-out for marine vehicles, there is now a significant motivation to provide digital solutions for navigation using these envisioned mandatory visual sensors. This paper explores the monocular direct sparse odometry algorithm when applied to a typical marine environment. The method uses a single camera to estimate a vessel\u27s motion and position over time and is then compared to ground truth to establish feasibility as both a local and global navigation system. Whilst it was inconsistent in accurately estimating vessel position, it was found that it could consistently estimate the vessel\u27s orientation in the majority of the situations the vessel was tasked with. It is therefore shown that monocular direct sparse odometry is partially suitable as a standalone navigation system and is a strong base for a multi-sensor solution

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    <b>BACKGROUND:</b> In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.<p></p> <b>RESULTS:</b> Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.<p></p> <b>CONCLUSIONS:</b> The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.<p></p&gt

    Management of Febrile Neutropenia - a German Prospective Hospital Cost Analysis in Lymphoproliferative Disorders, Non-Small Cell Lung Cancer, and Primary Breast Cancer

    Get PDF
    Background: Febrile neutropenia/leukopenia (FN/FL) is the most frequent dose-limiting toxicity of myelosuppressive chemotherapy, but German data on economic consequences are limited. Patients and Methods: A prospective, multicentre, longitudinal, observational study was carried out to evaluate the occurrence of FN/FL and its impact on health resource utilization and costs in non-small cell lung cancer (NSCLC), lymphoproliferative disorder (LPD), and primary breast cancer (PBC) patients. Costs are presented from a hospital perspective. Results: A total of 325 consecutive patients (47% LPD, 37% NSCLC, 16% PBC; 46% women; 38% age >= 65 years) with 68 FN/FL episodes were evaluated. FN/FL occurred in 22% of the LPD patients, 8% of the NSCLC patients, and 27% of the PBC patients. 55 FN/FL episodes were associated with at least 1 hospital stay (LPD n = 34, NSCLC n = 10, PBC n = 11). Mean (median) cost per FN/FL episode requiring hospital care amounted to (sic) 3,950 ((sic) 2,355) and varied between (sic) 4,808 ((sic) 3,056) for LPD, (sic) 3,627 ((sic) 2,255) for NSCLC, and (sic) 1,827 ((sic) 1,969) for PBC patients. 12 FN/FL episodes (LPD n = 9, NSCLC n = 3) accounted for 60% of the total expenses. Main cost drivers were hospitalization and drugs (60 and 19% of the total costs). Conclusions: FN/FL treatment has economic relevance for hospitals. Costs vary between tumour types, being significantly higher for LPD compared to PBC patients. The impact of clinical characteristics on asymmetrically distributed costs needs further evaluation

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    Notch and MAML-1 Complexation Do Not Detectably Alter the DNA Binding Specificity of the Transcription Factor CSL

    Get PDF
    Canonical Notch signaling is initiated when ligand binding induces proteolytic release of the intracellular part of Notch (ICN) from the cell membrane. ICN then travels into the nucleus where it drives the assembly of a transcriptional activation complex containing the DNA-binding transcription factor CSL, ICN, and a specialized co-activator of the Mastermind family. A consensus DNA binding site motif for the CSL protein was previously defined using selection-based methods, but whether subsequent association of Notch and Mastermind-like proteins affects the DNA binding preferences of CSL has not previously been examined.Here, we utilized protein-binding microarrays (PBMs) to compare the binding site preferences of isolated CSL with the preferred binding sites of CSL when bound to the CSL-binding domains of all four different human Notch receptors. Measurements were taken both in the absence and in the presence of Mastermind-like-1 (MAML1). Our data show no detectable difference in the DNA binding site preferences of CSL before and after loading of Notch and MAML1 proteins.These findings support the conclusion that accrual of Notch and MAML1 promote transcriptional activation without dramatically altering the preferred sites of DNA binding, and illustrate the potential of PBMs to analyze the binding site preferences of multiprotein-DNA complexes

    Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy

    Endothelin-1 Predicts Hemodynamically Assessed Pulmonary Arterial Hypertension in HIV Infection.

    Get PDF
    BackgroundHIV infection is an independent risk factor for PAH, but the underlying pathogenesis remains unclear. ET-1 is a robust vasoconstrictor and key mediator of pulmonary vascular homeostasis. Higher levels of ET-1 predict disease severity and mortality in other forms of PAH, and endothelin receptor antagonists are central to treatment, including in HIV-associated PAH. The direct relationship between ET-1 and PAH in HIV-infected individuals is not well described.MethodsWe measured ET-1 and estimated pulmonary artery systolic pressure (PASP) with transthoracic echocardiography (TTE) in 106 HIV-infected individuals. Participants with a PASP ≥ 30 mmHg (n = 65) underwent right heart catheterization (RHC) to definitively diagnose PAH. We conducted multivariable analysis to identify factors associated with PAH.ResultsAmong 106 HIV-infected participants, 80% were male, the median age was 52 years and 77% were on antiretroviral therapy. ET-1 was significantly associated with higher values of PASP [14% per 0.1 pg/mL increase in ET-1, p = 0.05] and PASP ≥ 30 mmHg [PR (prevalence ratio) = 1.24, p = 0.012] on TTE after multivariable adjustment for PAH risk factors. Similarly, among the 65 individuals who underwent RHC, ET-1 was significantly associated with higher values of mean pulmonary artery pressure and PAH (34%, p = 0.003 and PR = 2.43, p = 0.032, respectively) in the multivariable analyses.ConclusionsHigher levels of ET-1 are independently associated with HIV-associated PAH as hemodynamically assessed by RHC. Our findings suggest that excessive ET-1 production in the setting of HIV infection impairs pulmonary endothelial function and contributes to the development of PAH
    corecore