1,342 research outputs found

    Saturation of the parametric decay instability near the lower hybrid frequency

    Get PDF
    The nonlinear evolution and saturation of parametrically excited lower hybrid waves are studied numerically by solving the corresponding weak turbulence wave kinetic equation. The saturation level and the effective collision frequency nunu/sub f/ are obtained as functions of pump power. (auth

    Boundary element methods in elastography: a first explorative study

    Get PDF
    http://spiedigitallibrary.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6511&Issue=1&bproc=symp&scode=MI07 to find paper and front matter etc.Next to Magnet Resonance Elastography and Ultrasound Elastography, Digital Image Elasto-Tomography (DIET) is a new imaging-technique, using only motion data available on the boundary, to reconstruct mechanical material parameters, i.e. the interior sti.ness of a domain, in order to diagnose tissue related disease such as breast cancer. Where classically Finite Element Methods have been employed to solve this inverse problem, this paper explores a new approach to the reconstruction of mechanical material properties of tissue and tissue defects by the use of Boundary Element Methods (BEM). Using the Boundary Integral Equations for Linear Elasticity in two dimensions within a Conjugate Gradients based inverse solver, material properties of healthy and malicious tissue could be determined from displacement data on the boundary. First simulation results are presented

    Asymptotically cylindrical 7-manifolds of holonomy G_2 with applications to compact irreducible G_2-manifolds

    Full text link
    We construct examples of exponentially asymptotically cylindrical Riemannian 7-manifolds with holonomy group equal to G_2. To our knowledge, these are the first such examples. We also obtain exponentially asymptotically cylindrical coassociative calibrated submanifolds. Finally, we apply our results to show that one of the compact G_2-manifolds constructed by Joyce by desingularisation of a flat orbifold T^7/\Gamma can be deformed to one of the compact G_2-manifolds obtainable as a generalized connected sum of two exponentially asymptotically cylindrical SU(3)-manifolds via the method given by the first author (math.DG/0012189).Comment: 36 pages; v2: corrected trivial typos; v3: some arguments corrected and improved; v4: a number of improvements on presentation, paritularly in sections 4 and 6, including an added picture

    Closed forms and multi-moment maps

    Full text link
    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are guaranteed to exist and are unique when the symmetry group is (3,4)-trivial, meaning that the group is connected and the third and fourth Lie algebra Betti numbers vanish. We give a structural description of some classes of (3,4)-trivial algebras and provide a number of examples.Comment: 36 page

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Next-to-leading order QCD corrections to A_TT for prompt photon production

    Full text link
    We present a next-to-leading order QCD calculation of the cross section for isolated large-p_T prompt photon production in collisions of transversely polarized protons. We devise a simple method of dealing with the phase space integrals in dimensional regularization in the presence of the cos(2 phi) azimuthal-angular dependence occurring for transverse polarization. Our results allow to calculate the double-spin asymmetry A_TT for this process at next-to-leading order accuracy, which may be used at BNL-RHIC to measure the transversity parton distributions of the proton.Comment: 19 pages, LaTeX, 2 figures as eps file

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos⁥2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ→ℓ+ℓ−X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1⊄(x1,p⊄2)×hˉ1⊄(x2,k⊄2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos⁥2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T⊄(x,p⊄2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos⁥2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure

    A mechanism for the T-odd pion fragmentation function

    Full text link
    We consider a simple rescattering mechanism to calculate a leading twist TT-odd pion fragmentation function, a favored candidate for filtering the transversity properties of the nucleon. We evaluate the single spin azimuthal asymmetry for a transversely polarized target in semi-inclusive deep inelastic scattering (for HERMES kinematics). Additionally, we calculate the double TT-odd cos⁥2ϕ\cos2\phi asymmetry in this framework.Comment: 6 pages revtex, 7 eps figures, references added and updated in this published versio
    • 

    corecore